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GENERALIZED NEWMARK ALGORITHMS
I – Newmark Method for second order (Hyperbolic)

Equations

2

0 02

We start with the one-degree-of-fredom dynamic equation
dm ( , ) ( ) , (0) , (0)x F x x g x x x x x
dt

+ = = =

Here  is a "generalized" displacement. It can be temperature, velocity,
concentration, etc.  and  are "generalized" velocity and acceleration.
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Suppose that ,  and  are known at time . We can approximate
their values at time  using Taylor series expansions for the
displacement and velocity
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The parameters  and  were introduced to include the acceleration

 implicitly in the numerical scheme, so that the forces at the end
of the time step can be included to increase the accuracy of t
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β γ

+

he method.
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To develop the algorithm let us first assume that the function
( , ) is linear. So without loss of generality we can write

where , a, and g may be functions of time.
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This equation s solved for ,  and then
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EXAMPLEEXAMPLE2

2 0, (0) 1, (0) 0, ( ) cosh( )d x x x x x t t
dt

∗− = = = =

( )2 0 0

0 0 0

0 0

01 (1 2 ) 0.1 0.0025
We set = 1/4, = 1

Where we have used 1, 0 and
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2The equation becomes 399 1.0025
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and from here 0.0025125. The solution is
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Here we have cheated because we used the exact solution to get a
value for . We need a starting value for  but this is not part of
the data. In practise we usually estimate an initial value from
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m
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For no-linear equations the Newmark method is combined with a
Newton-Raphson iteration at each time step. The same steps are
Followed with the Linearized Operator 4
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6) If Q ,  a predetermined tolerance, then set
, , , and the time step is completed.

Otherwise go back to step 3) and complete the next iteration.
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EXAMPLE
2

2 0, (1) 1, (1) 2, ( ) 2 tan (ln ) 1d x x dx x x x t t
dt t dt

∗− = = − = = −

8Set  (1) 2, 1/ 4, 1/ 2, 10 , and  0.1x tβ γ ε −= − = = = Δ =

0 0 0

The linearized functions are  ( , )   and  ( , ) ,
and for 0 we have  0.805, 1.9, 0.0
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3. Third iteration,  2, 5 10   STOPp pi Q mp
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SYSTEMS OF (NON-LINEAR) HYPERBOLIC 
EQUATIONS
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1) The convergence test in step 7) is the most appropriate. The norms
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2) The matrices C and K are normally evaluated only once at the
start of the iteration (i = 0) to save CPU time.

EXAMPLE
2 2

2 2 sin( ) 0, , ( ,0) ( ), ( ,0) ( )
x a x b

u u u uu u x f x u x g x
t x x x= =

∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞− − = = = =⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

Because the aproximation sin( ) sin ( )  is not practical,

we introduce the " "
sin( ) ( )sin( )

i i
i
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It has been proved that this approximations do not cause loss of
accuracy in a variety of situations. However a general proof is not 
available and its appropriate ness must be checked case by case.
The element equations become:
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Because there is no first derivative the parameter     is not needed γ

1 2
1

2
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Element equations for 
1 1cos cos2 1 3 6
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Solution for 25 25, 20 20 and ( ),  ( ) chosen so
1

x t t f x g x− ≤ ≤ = − ≤ ≤
⎡ ⎤1 1that the exact solution is  ( , ) 4 tan cosh(1.1547 )cosech(0.57735 )
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ACCURACY AND STABILITY

2

If 1/ 2 the method is unconditionally stable in the linearized sense,
as long as /2. If < /2 stability is conditional. Moreover, the

1 1value = maximizes the high frequency numerical diss
4 2

γ
β γ β γ

β γ

≥
≥
⎛ ⎞+⎜ ⎟
⎝ ⎠

ipation.

As was the case for the -method, when =1/2 the scheme is second
order accurate in time. For >1/2 in general accuracy is only first order .

θ γ
γ

This is why the values =1/4 and =1/2 are the most frequently used.β γ

II – Generalized Newmark Method for first order 
(Parabolic) Equations

( ) ( )N f t
t
φ φ∂
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The variables  and  are treated as generalized velocity and
acceleration respectively. Therefore, since there is no equivalent
to displacement, the  parameter is not needed.
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It is easy to show that if the equation is linear, the algorithm is 
identical to the θ – method. This provides an extension of the 
θ – method to non-linear equations. 15

SYSTEMS DERIVED FROM SEMI-DISCRETE GALERKIN
FEM APPROXIMATIONS
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Example

( )
2

2

11
4, 0 1 , (0, ) 1 , 1, ) 0 , ( ,0)
10
4

if xu u uu x u t u t u x
t x x if x

ε

⎧ ≤⎪∂ ∂ ∂ ⎪= < < = = = ⎨
∂ ∂ ∂ ⎪ >

⎪⎩

Solve the Burgers equation with  = 1 using 4 Linear elements.ε

2
2 3 2 2 3 3

2
2 2

3 2 3 4 2 2 3 3 4 4

1 1 1 18 4
6 6 6 64 1 0

1 1 1 1 1( ) 1 4 1 4 8 4

u u u u u u
u
u u u u u u u u u u

⎡ ⎤− − + + −⎢ ⎥
⎡ ⎤ ⎡ ⎤ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ = + − + − − − + + =⎢ ⎥ ⎢ ⎥ ⎢ ⎥

Cu N u 03 2 3 4 2 2 3 3 4 4

4
2

3 4 3 3 4

( ) 1 4 1 4 8 4
24 6 6 6 6

0 1 4 1 14 8
6 6

u u u u u u u u u u
u

u u u u u

+ + + + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥
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2

2 3 2 2 3 3

2 3
2 2

2 3 4 2 2 3 3 4 4 2 3 4

3 42

3 4 3 3 4

1 1 1 18 4
6 6 6 6 4
1 1 1 1 14 8 4 4
6 6 6 6 24

41 14 8
6 6

i i i i i i

i i

i i i i i i i i i i i i i

i i

i i i i i

p p p p p p
p p

p p p p p p p p p p p p
p p

p p p p p

⎡ ⎤− − + + −⎢ ⎥
⎡ ⎤+⎢ ⎥
⎢ ⎥⎢ ⎥Δ = − + − − − + + − + +⎢ ⎥⎢ ⎥
⎢ ⎥+⎢ ⎥ ⎣ ⎦

⎢ ⎥− + − +
⎢ ⎥⎣ ⎦
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Tangent Matrix

2 3 2 3

2 3 2 4 3 4

3 4 3

1 1 1 18 4 0
6 6 6 3
1 1 1 1 1 14 8 4
3 6 6 6 6 3

1 1 10 4 8
3 6 6

u u u u

u u u u u u

u u u

⎡ ⎤− + − + +⎢ ⎥
⎢ ⎥
⎢ ⎥= − − − − + − + +
⎢ ⎥
⎢ ⎥
⎢ ⎥− − − −
⎢ ⎥⎣ ⎦

K

I t tiIncrement equations

2 3 2 3

2 3 2 4 3 4

3 4 3

1 1 1 18 4 0
6 6 6 34 1 0

1 1 1 1 1 1 11 4 1 4 8 4
3 6 6 6 6 3

0 1 4 1 1 10 4 8
3 6 6

i i i i

i i i i i i i i

i i i

p p p p

p p p p p p
t

p p p

γ

⎧ ⎫⎡ ⎤− + − + +⎪ ⎪⎢ ⎥
⎡ ⎤⎪ ⎪⎢ ⎥

⎪ ⎪⎢ ⎥ ⎢ ⎥+ − − − − + − + + Δ = Δ⎨ ⎬⎢ ⎥ ⎢ ⎥Δ⎪ ⎪⎢ ⎥ ⎢ ⎥⎣ ⎦⎪ ⎪⎢ ⎥− − − −⎪ ⎪⎢ ⎥⎣ ⎦⎩ ⎭

p Q
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Solution with 
1/2 and   0.005tγ = Δ =

As a  final example, consider solving the Burgers equation with
boundary conditions (0 ) 1 (1 ) 0 and initial conditionu t u t= =boundary conditions (0, ) 1,  (1, ) 0 and initial condition
u(x,0)=0. The analytical solution at steady-state is well known.
We also choos

u t u t

e 0.1. The steady state results arex tε = Δ = Δ =

19

Now set =0.01 keeping the rest of the problem unchanged.
We get

ε

We observe an oscillatory solution. This is not an error, it is the
Solution we will obtain with any kind of discretization that does
Not take special measures to account for the fact that the equation
Has become “CONVECTION DOMINATED”.

Further illustration:
20

Below we show the solution when 0.0025,  0.5,  0.05.
The figure shows the solution at 1.0, when the wave has advanced
halfway into the domain, and at time 3.0 which is essentially
steady-state.

x t
t

t

ε = Δ = Δ =
=

=

We now address the solution to these difficulties.
21

STEADY-STATE CONVECTIVE TRANSPORT
Let us start with the model equation for one-dimensional 
convection-diffusion

0d d dD u
dx dx dx

φ φ⎛ ⎞− + =⎜ ⎟
⎝ ⎠

The character of the equation changes from that of an elliptic
boundary value problem to that of a first order hyperbolic initial
al e problem according to the al e of D/value problem according to the value of D/u

Even when D/u << 1 there will be regions where the second 
order curvature dominates. We usually refer to these regions as
Boundary Layers.

The weighted residual form is

0 0

0
x LL

x

dw d d dD wu dx w D
dx dx dx dx

φ φ φ
=

=

⎡ ⎤⎛ ⎞ ⎛ ⎞+ + − =⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
∫

22

Discretize using Linear elements of size Δx = h and apply the
Galerkin method. The element stiffness matrix becomes

2 2

2 2

D u D u
h h
D u D u
h h

⎡ ⎤− − +⎢ ⎥
= ⎢ ⎥
⎢ ⎥− − +
⎢ ⎥⎣ ⎦

ek

The Global, assembled stiffness matrix becomes
0 0 ... 0 0 0

2 2
D u D u
h h

⎡ ⎤− − +⎢ ⎥
⎢ ⎥2 2

2 0 ... 0 0 0
2 2

20 ... 0 0 0
2 2

... ... ... ... ... ... ... ...
20 0 0 0 ...

2 2

0 0 0 0 ... 0
2 2

h h
D u D D u
h h h

D u D D u
h h h

D u D D u
h h h

D u D u
h h

⎢ ⎥
⎢ ⎥− − − +
⎢ ⎥
⎢ ⎥
⎢ ⎥− − − +

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥− − − +⎢ ⎥
⎢ ⎥
⎢ ⎥− − +
⎢ ⎥⎣ ⎦

K
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differs in two important ways from the matrices we obtained
before for heat conduction:
1) It is NOT SYMMETRIC
2) As D/u 1, the matrix is no longer diagonally dominant.

K

Different analysis tools are needed to understand the behavior. 
Look at a typical difference equation 

1 1
2 0 define 

2 2i i i
D u D D u uh
h h h D

φ φ φ γ− +
⎛ ⎞ ⎛ ⎞− − + + − + = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠2 2h h h D⎝ ⎠ ⎝ ⎠

where  is the local Peclet number. Re-writing the equation γ

( ) ( )1 11 / 2 2 1 / 2 0i i iγ φ φ γ φ− +− − + + − + =
i 1 2

i

This has a solution of the form  where 1 , (2 ) /(2 )
2that is     1,2, ... ,
2

A and B are determined from the boundary conditions.

i

i

A B i N

φ λ λ λ γ γ
γφ
γ

= = = + −
⎛ ⎞+

= + =⎜ ⎟−⎝ ⎠
24
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1 2
( / )The exact solution to the differential equation is ( ) u D xx c c eφ = +

3( / )

Hence the discrete solution represents the exponential term as
2 ( )
2

where ( 1) . This is called a (1,1) Pade  rational approximation

i

i

i

u D x i O h

x i h

e eγ γ
γ

⋅ ⎛ ⎞+
= ≅ +⎜ ⎟−⎝ ⎠

′= −

3Note that even though the approximation is ( ),  the solution
is oscillatory if >2 because the denominator becomes negative

O h
γis oscillatory if >2, because the denominator becomes negative.γ

25

2

( / )

The error analysis yields    ( ). However, when

2is large, the expresion does not have the 
2

correct asymptotic behavior.

i

h

i
u D x

O h

e

φ φ

γγ
γ

∗

∞
− =

⎛ ⎞+
≅ ⎜ ⎟−⎝ ⎠

( ) ( )1 1 1 1

1 1

To illustrate this re-write the difference equation as
1 12 0 and take the limit as .

2
The difference equation reduces to  a Leap-Frog solution.

i i i i i

i i

φ φ φ φ φ γ
γ

φ φ
− + + −

+

− + − + − = →∞

=1 1q p gi iφ φ+ −

2

If the mesh has an even number of nodes then the boundary condition
at  determines the value at all even nodes including . However,
if u>0 there is no physical mechanism to propagate perturbations 

x L x=
in 

the backward direction.

( )1 1 1

When 1 the mesh length is too large compared to the diffusion
length scale. The Galerkin approximation to the convective term is

and the value at  affects what happens 
2

at .
i

i i i
x x

i

d uu x
dx
x

γ

φ φ φ+ − +
=

≅ −
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4 9
To avoid this non-physical behavior and make 2 we can 
only make  smaller, but values of  that are (10 10 ) are 
common. We need somethig better.

h O
γ

γ
<

−

1

1

People that use finite differences introduced 

( ) 0

( ) 0i

i i

x x
i i

Upwind Differences
u if u

d hu
udx if u
h

φ φ
φ

φ φ

−

=
+

⎧ − >⎪⎪≅ ⎨
⎪ − <
⎪⎩

common. We need somethig better.

i-1 i+1

If u>0, this leads to difference equations of the form
(1+ ) (2 ) 0iγ φ γ φ φ− + + − = 27

Note that now the matrix  is positive definite for all , and the 
solution to the difference equation is   (1 )  and this
is stable for all values of 

i
i A B

γ
φ γ

γ
= + +

K

So upwinding appears to provide a simple solution. However, it
turns out that the approximations are too inaccurate, as shown, 
unless h is unacceptably small.
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( )1 1 12
( )

Let us perform a truncation error analysis on the difference equation

written as 2 Let  t( ).  heni i i i i

k
k

i k

D u
xh h

d
d
φφφ φ φ φ φ− + −− + − + − ≡

2 3 4
(1) (2) (3) (4)

1 2 3! 4!i i i i i i
h h hh HOTφ φ φ φ φ φ+ = + + + + +

2 3 4
(1) (2) (3) (4)

1 2 3! 4!i i i i i i
h h hh HOTφ φ φ φ φ φ− = − + − + +

( )
4

2 (2) (4)
1 1Then   2 or

12i i i i i
hh HOTφ φ φ φ φ− +− + − = − − +

( ) ( )
2

(2) (4)
1 12   2

12i i i i i
D DhD HOT
h

φ φ φ φ φ− +− − − + − = +

32
(1) (2) (3)

1Similarly ,   therefore
2 6i i i i i
h hh HOTφ φ φ φ φ−− = − + +
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2
(1) (2) (3)

1( )
2 6i i i i i

u uh uhu HOT
h

φ φ φ φ φ−− − = − +

( )
2

1 12 2

2

Putting all together we have

2
i

i i i
x x

d d DD u
dx dx h

uh h D

φ φ φ φ φ− +

=

⎛ ⎞ ⎛ ⎞− + − − + − =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

⎛ ⎞(2) (3) (4)

2 6 2i i i
uh h Du HOTφ φ φ⎛ ⎞− + +⎜ ⎟

⎝ ⎠
Truncation error

(2)

There are two problems with the truncation error.

we have lost the second order approximation
1) The leading term  is only ( ), linear

2
    .

i
uh O hφ
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2

(2)
i

2

2) It contains ,  so to interpret the approximation correctly we
    must move it to the left hand side and interpret the difference 
    approximation as discretizing the equ

2

ation
uh dD

dx

φ

φ⎛ ⎞− +⎜ ⎟
⎝ ⎠

0du
dx
φ

+ =

The term  is called  and in
2

general is much larger than . So we are solving a different problem.

uh Artificial Numerical Diffusion
D

U i d diff i hi bili b ddi ifi i l diff iUpwind differncing achieves stability by adding an artificial diffusion
to the discretizd equation. Also, it can be shown by a slightly more 
involved analysis that the Galerkin method is "underdiffused " even
with 2.γ <
This suggests that we should be able to find a method that is in-
between upwind and Galerkin and that has zero numerical diffusion.
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