Steady-State Natural Convection

$\frac{\partial u}{\partial x}+\frac{\partial w}{\partial z}=0$
$u \frac{\partial u}{\partial x}+w \frac{\partial u}{\partial z}=-\frac{\partial p}{\partial x}+\operatorname{Pr}\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial z^{2}}\right)$
$u \frac{\partial w}{\partial x}+w \frac{\partial w}{\partial z}=-\frac{\partial p}{\partial z}+\operatorname{Pr}\left(\frac{\partial^{2} w}{\partial x^{2}}+\frac{\partial^{2} w}{\partial z^{2}}\right)+\operatorname{Pr} R a T$
$u \frac{\partial T}{\partial x}+w \frac{\partial T}{\partial z}=\frac{\partial^{2} T}{\partial x^{2}}+\frac{\partial^{2} T}{\partial z^{2}}$
Boussinesq approximation

$$
\begin{equation*}
\rho=\rho_{0}\left[1+\beta\left(T-T_{0}\right)\right] \tag{1}
\end{equation*}
$$

$$
\left[L_{1}\left(u^{k}, \mathrm{v}^{k}\right)\right]\left[\begin{array}{c}
\Delta u^{k} \\
\Delta \mathrm{v}^{k}
\end{array}\right] \equiv\left[\frac{\partial}{\partial x}\right] \Delta u+\left[\frac{\partial}{\partial y}\right] \Delta \mathrm{v}=0
$$

$$
\left[L_{2}\left(u^{k}, \mathrm{v}^{k}, p^{k}\right)\right]\left[\begin{array}{l}
\Delta u^{k} \\
\Delta \mathrm{v}^{k} \\
\Delta p^{k}
\end{array}\right] \equiv\left[u^{k} \frac{\partial}{\partial x}+\frac{\partial u^{k}}{\partial x}+w^{k} \frac{\partial}{\partial z}-\operatorname{Pr}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)\right] \Delta u
$$

$$
+\left(\frac{\partial u^{k}}{\partial y}\right) \Delta w^{+}\left[\frac{\partial}{\partial \mathrm{x}}\right] \Delta p=0
$$

$$
\left[L_{3}\left(u^{k}, \mathrm{v}^{k}, p^{k}\right)\right]\left[\begin{array}{c}
\Delta u^{k} \\
\Delta \mathrm{v}^{k} \\
\Delta p^{k}
\end{array}\right] \equiv\left[u^{k} \frac{\partial}{\partial x}+w^{k} \frac{\partial}{\partial z}+\frac{\partial z^{k}}{\partial z}-\operatorname{Pr}\left(\frac{\partial^{2}}{\partial x^{2}}-\frac{\partial^{2}}{\partial z^{2}}\right)\right] \Delta \mathrm{v}
$$

$$
+\left(\frac{\partial w^{k}}{\partial x}\right) \Delta u+\left[\frac{\partial}{\partial y}\right] \Delta p
$$

Non-Linear Operators
$\mathbf{D}_{1}(u, w) \equiv \frac{\partial u}{\partial x}+\frac{\partial w}{\partial z}=0$
$\mathbf{D}_{2}(u, w, p) \equiv u \frac{\partial u}{\partial x}+w \frac{\partial u}{\partial z}=-\frac{\partial p}{\partial x}+\operatorname{Pr}\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial z^{2}}\right)$
$\mathbf{D}_{3}(u, w, p) \equiv u \frac{\partial w}{\partial x}+w \frac{\partial w}{\partial z}=-\frac{\partial p}{\partial z}+\operatorname{Pr}\left(\frac{\partial^{2} w}{\partial x^{2}}+\frac{\partial^{2} w}{\partial z^{2}}\right)+\operatorname{Pr} \operatorname{RaT}$
Linearized operators
$\left[L_{T}\left(u^{k}, w^{k}\right)\right][T]=\left[u^{k} \frac{\partial}{\partial x}+w^{k} \frac{\partial}{\partial z}-\frac{\partial^{2}}{\partial x^{2}}-\frac{\partial^{2}}{\partial z^{2}}\right] T=0$
2

Algorithm

1) The dependent variables are know at step $k, u^{k}, w^{k}, p^{k}, T^{k}$
2) Perform a Newton-Raphson iteration $\mathbf{L}^{k} \mathbf{a}=-\mathbf{D}^{k}$ on the fluid flow equations keeping T^{k} fixed, to find u^{k+1}, w^{k+1} and p^{k+1}
3) Solve for T^{k+1} from $\left[L_{T}\left(u^{k+1}, w^{k+1}\right)\right] \mathrm{T}^{k+1}=0$ using the values of u^{k+1} and w^{k+1} from the previous step.
4) Check for convergence in all variables. If the convergence criterion is satisfied STOP. If not set $k=k+1$ and go back to step 2)
Clearly there are several ways in which this solution can be Obtained, and decisions have to be made depending on the size Of the problem. To solve all equations coupled requires 80% more Storage than this way. NO BEST ALGORITHM

SOLUTION DONE IN STEPS 4

The heat transfer accross the enclosure is calculated from

$$
\overline{N u}=\int_{-L / 2}^{L / 2} \frac{\partial T}{\partial x}(L / 2, y) d y
$$

$$
\overline{N u}=4.6
$$

Local Nusselt number along vertical wall $x=L / 2$ for $R a=10^{5}$ and $\mathrm{Pr}=1 .{ }_{6}$

TIME DEPENDENCE

Here we must distinguish between PARABOLIC equations represented by the Diffusion equation

$$
\frac{\partial \phi}{\partial t}=\frac{\partial}{\partial x}\left(D \frac{\partial \phi}{\partial x}\right)+\frac{\partial}{\partial y}\left(D \frac{\partial \phi}{\partial y}\right)+S
$$

and HYPERBOLIC equations such as the general Wave equation

$$
m \frac{\partial^{2} \phi}{\partial t^{2}}+\alpha \frac{\partial \phi}{\partial t}=\frac{\partial}{\partial x}\left(k \frac{\partial \phi}{\partial x}\right)+\frac{\partial}{\partial y}\left(k \frac{\partial \phi}{\partial y}\right)+F(\phi, \dot{\phi})
$$

THE SEMI-DISCRETE GALERKIN METHOD

As model equation we will use the one-dimensional diffusion equation

$$
\rho c_{\mathrm{v}} \frac{\partial T}{\partial t}=k \frac{\partial^{2} T}{\partial x^{2}}+Q \quad 0<x<L, t>0
$$

with appropriate boundary conditions. Now $T=T(x, t)$, so we also need an initial condition of the form $\quad T(x, 0)=T_{0}(x)$

The weighted residual form is
$\int_{0}^{L}\left(\rho c_{\mathrm{v}} w \frac{\partial T}{\partial t}+k \frac{\partial w}{\partial x} \frac{\partial T}{\partial x}+w Q\right) d x+\left[w\left(-k \frac{\partial T}{\partial x}\right)\right]_{0}^{L}=0$
The function $T(x, t)$ is written separating the variables as

$$
T(x, t)=\sum_{i} N_{j}(x) T_{j}(t)
$$

The Galerkin formulation at time t becomes
$\sum_{j}\left[\int_{0}^{L} \rho c_{\mathrm{v}} N_{i} N_{j} d x\right] \dot{T}_{j}+\sum_{j}\left[\int_{0}^{L} k \frac{\partial N_{i}}{\partial x} \frac{\partial N_{j}}{\partial x} d x\right] T_{j}=\int_{0}^{L} N_{i} Q d x-\left[N_{i}\left(-k \frac{\partial T}{\partial x}\right)\right]_{0}^{L}$
Where $\dot{T} \equiv \frac{\partial T}{\partial t}$ and leads to a system of equations of the form

$$
\mathbf{C} \dot{\mathbf{T}}+\mathbf{K T}=\mathbf{Q}
$$

Assuming constant properties, for Linear elements we have

$$
\begin{aligned}
& c_{i j}=\int_{0}^{h} N_{i}(x) N_{j}(x) d x,\left[\begin{array}{c}
N_{1} \\
N_{2}
\end{array}\right]=\left[\begin{array}{c}
1-(x / h) \\
x / h
\end{array}\right] \Rightarrow \mathbf{C}=\frac{h}{6}\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right] \\
& \mathrm{k}_{\mathrm{ij}}=\int_{0}^{\mathrm{h}} \frac{d N_{i}}{d x} \frac{d N_{j}}{d x} d x \Rightarrow \mathbf{K}=\frac{k}{h}\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right]
\end{aligned}
$$

$$
\text { For constant } \mathrm{Q}, \quad f_{i}=\int_{0}^{h} N_{i} Q d x \Rightarrow \mathbf{f}=\frac{h Q}{2}\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

So we have
$\left\{\frac{\rho c_{\mathrm{v}} h}{6 \Delta t}\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right]+\frac{\theta k}{h}\left[\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right]\right\}\left[\begin{array}{l}T_{1}^{n+1} \\ T_{2}^{n+1}\end{array}\right]=\left\{\frac{\rho c_{\mathrm{v}} h}{6 \Delta t}\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right]-\frac{(1-\theta) k}{h}\left[\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right]\right\}\left[\begin{array}{l}T_{1}^{n} \\ T_{2}^{n}\end{array}\right.$

$$
+\frac{\theta h Q^{n+1}}{2}\left[\begin{array}{l}
1 \\
1
\end{array}\right]++\frac{(1-\theta) h Q^{n}}{2}\left[\begin{array}{l}
1 \\
1
\end{array}\right]_{10}
$$

After applying the boundary conditions we get

$$
\frac{1}{12 \Delta t}\left(4 T_{2}^{n+1}+1\right)+0.2\left(2 T_{2}^{n}-1\right)=\frac{1}{12 \Delta t}\left(4 T_{2}^{n}+1\right)
$$

$$
\text { which reduces to }\left(\frac{1}{3 \Delta t}+0.4\right) T_{2}^{n+1}=\frac{1}{3 \Delta t} T_{2}^{n}+0.2
$$

Notice that as $\Delta t \rightarrow \infty, T_{2} \rightarrow \frac{1}{2}$, the correct steady state result.
Look at the results for the example in pages 263-264 in the text book
The values $\theta=0,0.5$, and 1.0 produce the Galerkin equivalent of the Euler, Crank-Nicolson and Backward Implicit methods respectively and are known as
Euler-Galerkin
Crank-Nicolson-Galerkin
Backward-Implicit-Galerkin

12

1) Accuracy and Stability
It can be shown through truncation error analysis that when
$\theta=0$ and $\theta=1$ the methods are first order $O(\Delta t)$. When
$\theta=0.5$ the Crank-Nicolson-Galerkin method is second order
$O\left((\Delta t)^{2}\right)$. For any other value $0<\theta<1$ the method converges
at rates in between 0 and 1 .
2) Stability
i) If $1 / 2 \leq \theta \leq 1$ the method is UNCONDITIONALLY STABLE.
ii) If $0 \leq \theta<1 / 2$ the method is CONDITIONALLYSTABLE.
The time step limitation is given by $\Delta t<\frac{2}{\lambda(1-2 \theta)}$ where
λ is the largest eigenvalue of the generalized eigenvalue
problem $(\mathbf{K}-\lambda \mathbf{C}) \mathbf{X}=\mathbf{0}$
3) Let $\Delta t=\frac{1}{6 D_{T}}$ the stability limit. The recursive relation becomes $T_{2}^{n+1}=-T_{2}^{n}+1$ and starting with $T_{2}^{0}=0$ we get $T_{2}^{2}=1, T_{2}^{3}=0, T_{2}^{4}=1$, etc. which also diverges as expected.
4) Now we choose $\Delta t=\frac{1}{8 D_{T}}<\frac{1}{6 D_{T}}$ the algorithm becomes $T_{2}^{n+1}=-\frac{1}{2} T_{2}^{n}+\frac{3}{4}$ and the time history is $T_{2}^{0}=0, T_{2}^{1}=0.75$, $T_{2}^{2}=0.375, T_{2}^{3}=0.5625, T_{2}^{4}=0.46875$, etc. Clearly as $\mathrm{t} \rightarrow \infty$ the solution converges to the correct steady state, but the time evolution is very poorly approximated and oscillates because the time step is too large
5) Choosing a smaller $\Delta t=\frac{1}{24 D_{T}}$ gives $T_{2}^{0}=0, T_{2}^{1}=0.375$, $T_{2}^{2}=0.4375, \ldots, T_{2}^{12}=0.49988$ there is a great improvement in accuracy and the solution is monotonic.
Exact solution $T_{2}\left(1 / 2 D_{T}\right)=0.49542$

MASS LUMPING

One of the important cases is the Euler-Galerkin $\theta=0$. In matrix form this is:

$$
\frac{1}{\Delta t} \mathbf{C T}^{n+1}=\left(\frac{1}{\Delta t} \mathbf{C}-\mathbf{K}\right) \mathbf{T}^{n}+\mathbf{Q}
$$

This differs from the Euler method only by the presence of the matrix C, otherwise it would be a fully explicit method. Because of C Galerkin methods can never be fully explicit.
To obtain fully explicit formulations using the Galerkin method we introduce the concept of MASS LUMPING. This is of great practical importance and consists in DIAGONALIZING C in a consistent way.
There are many ways to diagonalize \mathbf{C}, the only one of interest to us consists in adding the rows of \mathbf{C} placing the result in the diagonal and setting all off-diagonal elements to zero. That is

$$
\overline{\mathbf{C}}=\left[\bar{c}_{i j}\right]= \begin{cases}\sum_{k} c_{i k} & \text { if } i=j \\ 0 & \text { if } i \neq j\end{cases}
$$

17

Lets go back to our example but keep D_{T} as a parameter and still use two linear elements and $\theta=0$.

$$
\frac{\partial T}{\partial t}=D_{T} \frac{\partial^{2} T}{\partial x^{2}} \quad T(0, t)=0, T(1, t)=1, T(x, 0)=0
$$

The final equation becomes $\frac{1}{3 \Delta t} T_{2}^{n+1}=\left(\frac{1}{3 \Delta t}-4 D_{T}\right) T_{2}^{n}+2 D_{T}$.
That is $\mathbf{C}=\left[\frac{1}{3}\right]$ and $\mathbf{K}=\left[4 D_{T}\right]$. Therefore the only eigenvalue
is $\lambda=12 D_{T}$, and the stability limit for Euler-Galerkin $(\theta=0)$ is
$\Delta t<\frac{1}{6 D_{T}}$. Rewrite the equation as $T_{2}^{n+1}=\left(1-12 \Delta t D_{T}\right) T_{2}^{n}+6 \Delta t D_{T}$
Now let us try several values for $\Delta \mathrm{t}$:
l) Set $\Delta t>\frac{1}{6 D_{T}}=\frac{1}{3 D_{T}}$. The recursive relation becomes $T_{2}^{n+1}=-3 T_{2}^{n}+2$ Then starting from $T_{2}^{0}=0$ we get $T_{2}^{1}=2, T_{2}^{2}=-4, T_{2}^{3}=14, T_{2}^{5}=-40$, etc that diverges very fast.

Solution using three Linear elements. The element equations are $\frac{1}{18 \Delta t}\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right]\left[\begin{array}{l}T_{1}^{n+1} \\ T_{2}^{n+1}\end{array}\right]=\left\{\frac{1}{18 \Delta t}\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right]-3 D_{T}\left[\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right]\right\}\left[\begin{array}{l}T_{1}^{n} \\ T_{2}^{n}\end{array}\right]$ and the final assembled equations after applying boundary conditions become
$\frac{1}{18 \Delta t}\left[\begin{array}{ll}4 & 1 \\ 1 & 4\end{array}\right]\left[\begin{array}{l}T_{2}^{n+1} \\ T_{3}^{n+1}\end{array}\right]=\left\{\frac{1}{18 \Delta t}\left[\begin{array}{ll}4 & 1 \\ 1 & 4\end{array}\right]-3 D_{T}\left[\begin{array}{cc}2 & -1 \\ -1 & 2\end{array}\right]\right\}\left[\begin{array}{l}T_{2}^{n} \\ T_{3}^{n}\end{array}\right]+\left[\begin{array}{c}0 \\ 3 D_{T}\end{array}\right.$
The eigenvalue problem is
$\left|3 D_{T}\left[\begin{array}{cc}2 & -1 \\ -1 & 2\end{array}\right]-\frac{\lambda}{18}\left[\begin{array}{ll}4 & 1 \\ 1 & 4\end{array}\right]\right|=0$ which gives $\lambda_{1}=54 D_{T}, \lambda_{2}=10.8 D_{T}$ Hence the stability limit is $\Delta t<\frac{1}{27 D_{T}}$ Note that the smaller te mesh the smaler the critical Δt. A good estimate is given by $\Delta t<h^{2} /\left(3 D_{T}\right)$

The matrix $\overline{\mathbf{C}}$ is called the LUMPED MASS MATRIX, replacing C by $\overline{\mathbf{C}}$ in the Euler-Galerkin method gives

$$
\frac{1}{\Delta t} \overline{\mathbf{C}} \mathbf{T}^{n+1}=\left(\frac{1}{\Delta t} \mathbf{C}-\mathbf{K}\right) \mathbf{T}^{n}+\mathbf{Q}
$$

Now $\overline{\mathbf{C}}$ can be easily inverted, $\overline{\mathbf{C}}^{-1}$ is diagonal and $c_{i i}^{-1}=1 / c_{i i}$. so

$$
\mathbf{T}^{n+1}=\Delta t \overline{\mathbf{C}}^{-1}\left[\left(\frac{1}{\Delta t} \mathbf{C}-\mathbf{K}\right) \mathbf{T}^{n}+\mathbf{Q}\right]
$$

Effect of Mass Lumping

In our example, using 2 Linear elements we obtain $\overline{\mathbf{C}}=[1 / 2]$ and $\mathbf{K}=\left[4 D_{T}\right]$. The eigenvalue is $\lambda=8 D_{T}$ and the time step limit is given by $\Delta t<\frac{1}{4 D_{T}}$ as opposed to $\Delta t<\frac{1}{6 D_{T}}$ with the consistent Mass Matrix. 18

With 3 Linear elements the eigenvalue problem is
$\left|3 D_{T}\left[\begin{array}{cc}2 & -1 \\ -1 & 2\end{array}\right]-\lambda\left[\begin{array}{cc}1 / 3 & 0 \\ 0 & 1 / 3\end{array}\right]\right|=0$ with solution $\lambda_{1}=27 D_{T}, \lambda_{2}=0 D_{T}$ So the stability limit is $\lambda<\frac{2}{27 D_{T}}$ as opposed to $\lambda<\frac{1}{27 D_{T}}$ with the consistent Mass Matrix.

REMARKS:

1) Lumped matrices can also be obtained using cosed Newto-Cotes quadrature rules in which the integration points coincide with the nodes. For example, if the trapezoidat rule is used to integrate

Now we apply the Crank-Nicolson-Galerkin method $(\theta=1 / 2)$ to our example problem. Since the method is unconditionally stable, we use 3 Linear elements with $D_{T}=1$ and look at the behavior of the solution. The resulting system of equations is
$\left\{\left[\begin{array}{ll}4 & 1 \\ 1 & 4\end{array}\right]+27 \Delta t\left[\begin{array}{cc}2 & -1 \\ -1 & 2\end{array}\right]\right\}\left[\begin{array}{l}T_{2}^{n+1} \\ T_{3}^{n+1}\end{array}\right]=\left\{\left[\begin{array}{ll}4 & 1 \\ 1 & 4\end{array}\right]-27 D_{T}\left[\begin{array}{cc}2 & -1 \\ -1 & 2\end{array}\right]\right\}\left[\begin{array}{l}T_{2}^{n} \\ T_{3}^{n}\end{array}\right]+\left[\begin{array}{c}0 \\ 54 \Delta t\end{array}\right]$

1) With $\Delta t=4 / 27$ the solution for the first 5 time steds is

The initial oscillations due to the large Time step are evident as well as their quickly dying out in time

Runge-Kutta Methods (Explicit)

Consider the 1-degree of freedom ordinary differential equation $\frac{d y}{d t}=f(y, t)$. The second order Runge-Kutta method, also known as the modified Euler method is defined by: If y_{n} is known at t_{n} then y_{n+1} at time $t_{n+1}=t_{n}+\Delta t$ is found from
$k_{1}=f\left(y_{n}, t_{n}\right), k_{2}=f\left(y_{n}+\frac{\Delta t}{2} k_{1}, t_{n}+\frac{\Delta t}{2}\right), \quad y_{n+1}=y_{n}+\Delta t \cdot k_{2}$

The method is $O\left((\Delta t)^{2}\right)$. An algorithm which is $O\left((\Delta t)^{4}\right)$, called the fourth order or "classical" Runge-Kutta method is given by
$\mathrm{k}_{1}=f\left(y_{n}, t_{n}\right), k_{2}=f\left(y_{n}+\frac{\Delta t}{2} \mathrm{k}_{1}, t_{n}+\frac{\Delta t}{2}\right), k_{3}=f\left(y_{n}+\frac{\Delta t}{2} \mathrm{k}_{2}, t_{n}+\frac{\Delta t}{2}\right)$ $k_{4}=f\left(y_{n}+\Delta t \mathrm{k}_{3}, t_{n}+\Delta t\right), \quad y_{n+1}=y_{n}+\frac{\Delta t}{6}\left(\mathrm{k}_{1}+2 \mathrm{k}_{2}+2 \mathrm{k}_{3}+\mathrm{k}_{4}\right)$
2) The stability limit is always larger using lumped masses, than consistent mass matrix. The algorithms are more stable.
3) Algorithms using consistent mass are in general more accurate than their lumped mass counterpart. Mass lumping can have an adverse effect in accuracy.
4) The consistent mass can introduce oscillations during the early stages of the solution, especially if the initial data is not smooth. These oscillations disappear quickly as time advances, but are unacceptable in many problems. Lumped masses do not suffer from this problem.
5) The oscillations in consistent formulations are generally known as "noise" and occur when the time step exceeds a critical time step related to the solution.
Unfortunately this critical value may be unreasonably small and it is not realistic to reduce the time step to that level.

20

For $\Delta t=1 / 27$ the oscillations do not occur, the first 5 time steps are

n	T_{2}^{n}	$\mathrm{T}_{3}^{\mathrm{n}}$
1	0.0	0.33333
2	0.11111	0.44444
3	0.18518	0.51852
4	0.23457	0.56790
5	0.26749	0.60082

Using mass lumping and $\Delta t=4 / 27$ the oscillations practically disappear as shown in the first 5 time steps below

n	$\mathrm{T}_{2}^{\mathrm{n}}$	$\mathrm{T}_{3}^{\mathrm{n}}$
1	0.17778	0.62222
2	0.33185	0.62815
3	0.32316	0.66884
4	0.33459	0.66652
5	0.33321	0.66701

22

The extension to vector systems of the form $\mathbf{C u}+\mathbf{F}(\mathbf{u})=\mathbf{0}$ is obtained after first lumping the mass to get $\dot{\mathbf{u}}=-\overline{\mathbf{C}}^{-1} \mathbf{F}(\mathbf{u}) \equiv \mathbf{G}(\mathbf{u})$. We can now re-write the agorithms replacing y byu and f by \mathbf{G}. That is, the second order Runge-Kutta method becomes
$\mathbf{K}_{1}=\mathbf{G}\left(\mathbf{u}^{\mathbf{n}}, t_{n}\right), \quad \mathbf{K}_{2}=\mathbf{G}\left(\mathbf{u}^{\mathbf{n}}+\frac{\Delta t}{2} \mathbf{K}_{1}, t_{n}+\frac{\Delta t}{2}\right), \mathbf{u}^{\mathbf{n}+1}=\mathbf{u}^{\mathbf{n}}+\Delta t \mathbf{K}_{2}$

$$
\begin{aligned}
& \text { The fourth order method becomes } \\
& \qquad \begin{array}{l}
\mathbf{K}_{1}=\mathbf{G}\left(\mathbf{u}^{\mathrm{n}}, t_{n}\right), \mathbf{K}_{2}=\mathbf{G}\left(\mathbf{u}^{\mathrm{n}}+\frac{\Delta t}{2} \mathbf{K}_{1}, t_{n}+\frac{\Delta t}{2}\right), \mathbf{K}_{3}=\mathbf{G}\left(\mathbf{u}^{\mathrm{n}}+\frac{\Delta t}{2} \mathbf{K}_{2}, t_{n}+\frac{\Delta t}{2}\right) \\
\mathbf{K}_{4}=\mathbf{G}\left(\mathbf{u}^{\mathrm{n}}+\Delta t \mathbf{K}_{3}, t_{n}+\Delta t\right), \mathbf{u}^{\mathrm{n+1}}=\mathbf{u}^{\mathrm{n}}+\frac{\Delta t}{6}\left(\mathbf{K}_{1}+2 \mathbf{K}_{2}+2 \mathbf{K}_{3}+\mathbf{K}_{4}\right) \\
\text { Example }
\end{array}
\end{aligned}
$$

Apply the second order Runge-Kutta method to the Burgers equation.
$\left.\frac{\partial u}{\partial t} u \frac{\partial u}{\partial x}=\varepsilon \frac{\partial^{2} u}{\partial x^{2}}, \quad 0<x<1, \quad u(0, t)=1, u(1, t)=0\right), \quad u(x, 0)= \begin{cases}1 \text { if } & x \leq \frac{1}{4} \\ 0 \text { if } & x_{24}>\frac{1}{4}\end{cases}$

Setting $\varepsilon=1$, the semidescrete Galerkin form using 4 Linear elements is
$\frac{1}{24}\left[\begin{array}{lll}4 & 1 & 0 \\ 1 & 4 & 1 \\ 0 & 1 & 4\end{array}\right]\left[\begin{array}{c}\dot{u}_{2} \\ \dot{u}_{3} \\ \dot{u}_{4}\end{array}\right]=-\left[\begin{array}{c}8 u_{2}-4 u_{3}+\frac{1}{6} u_{2} u_{3}+\frac{1}{6} u_{3}^{2}-\frac{26}{6} \\ -4 u_{2}+8 u_{3}-4 u_{4}-\frac{1}{6} u_{2}^{2}-\frac{1}{6} u_{2} u_{3}+\frac{1}{6} u_{3} u_{4}+\frac{1}{6} u_{4}^{2} \\ -4 u_{3}+8 u_{4}-\frac{1}{6} u_{3}^{2}-\frac{1}{6} u_{3} u_{4}\end{array}\right]$
After lumping and inverting the Mass Matrix

$$
\left[\begin{array}{c}
\dot{u}_{2} \\
\dot{u}_{3} \\
\dot{u}_{4}
\end{array}\right]=-\left[\begin{array}{c}
\frac{4}{5}\left(-48 u_{2}+24 u_{3}-u_{2} u_{3}-u_{3}^{2}+25\right) \\
\frac{2}{3}\left(24 u_{2}-48 u_{3}+24 u_{4}+u_{2}^{2}+u_{2} u_{3}-u_{3} u_{4}-u_{4}^{2}\right) \\
\frac{4}{5}\left(24 u_{3}-48 u_{4}+u_{3}^{2}+u_{3} u_{4}\right)
\end{array}\right]
$$

Now apply the second order Runge-Kutta method

$$
\mathbf{K}_{1}=\left[\begin{array}{l}
k_{12} \\
k_{13} \\
k_{14}
\end{array}\right]=-\left[\begin{array}{c}
\frac{4}{5}\left(-48 u_{2}^{n}+24 u_{3}^{n}-u_{2}^{n} u_{3}^{n}-\left(u_{3}^{n}\right)^{2}+25\right) \\
\frac{2}{3}\left(24 u_{2}^{n}-48 u_{3}^{n}+24 u_{4}^{n}+\left(u_{2}^{n}\right)^{2}+u_{2}^{n} u_{3}^{n}-u_{3}^{n} u_{4}^{n}-\left(u_{4}^{n}\right)^{2}\right) \\
\frac{4}{5}\left(24 u_{3}^{n}-48 u_{4}^{n}+\left(u_{3}^{n}\right)^{2}+u_{3}^{n} u_{4}^{n}\right)
\end{array}\right]
$$

Set $\alpha=\frac{\Delta t}{2}$

$$
\mathbf{K}_{2}=\left[\begin{array}{l}
k_{22} \\
k_{23} \\
k_{24}
\end{array}\right]=-\left[\begin{array}{c}
\frac{4}{5}\binom{-48\left(u_{2}^{n}+\alpha k_{12}\right)+24\left(u_{3}^{n}+\alpha k_{13}\right)-\left(u_{2}^{n}+\alpha k_{12}\right)\left(u_{3}^{n}+\alpha k_{13}\right)}{-\left(u_{3}^{n}+\alpha k_{13}\right)^{2}+25} \\
\frac{2}{3}\binom{24\left(u_{2}^{n}+\alpha k_{12}\right)-48\left(u_{3}^{n}+\alpha k_{13}\right)+24\left(u_{2}^{n}+\alpha k_{12}\right)^{2}}{+\left(u_{2}^{n}+\alpha k_{12}\right)\left(u_{3}^{n}+\alpha k_{13}\right)-\left(u_{3}^{n}+\alpha k_{13}\right)\left(u_{4}^{n}+\alpha k_{14}\right)-\left(u_{4}^{n}+\alpha k_{14}\right)^{2}} \\
\frac{4}{5}\binom{24\left(u_{3}^{n}+\alpha k_{13}\right)-48\left(u_{4}^{n}+\alpha k_{14}\right)+\left(u_{3}^{n}+\alpha k_{13}\right)^{2}}{+\left(u_{3}^{n}+\alpha k_{13}\right)\left(u_{4}^{n}+\alpha k_{14}\right)}_{26}
\end{array}\right.
$$

The greatest advantage of Explicit methods is that they do not require the solution of a linear system of equations. This greatly reduces the memory requirements and the CPU time.
The greatest disadvantage is the time step limitation, which can be very severe. When very small time steps must be used the CPU time can again grow excessively large. Vectorization and paralelization must be used for very large problems.
In general, stability analysis can only be done for linear equations. For
Runge-Kutta methods we use the linearized equation $\frac{d y}{d t}+\alpha y=f(t)$
where $\alpha=\partial f$ / ∂y and depends on the solution.
For the second order method the stability limit is $\alpha \Delta t \leq 2$.
For the fourth order method we get $\alpha \Delta t \leq 2.875$
These expressions give us a good idea of what the time step should be, but ARE NOT EXACT, only approximations. The difficulty to calculate the time step limit is a disadvantage of the Runge-Kutta methods

Oden and Wellford (1972) used $4^{\text {th }}$ order Runge-Kutta to simulate
a Couette flow using quadratic triangular elements. The mesh and
domain are

