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Steady-State Natural Convection
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Non-Linear Operators
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Algorithm
1) The dependent variables are know at step k, , , ,k k k ku w p T
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2) Perform a Newton-Raphson iteration  on the fluid
flow equations keeping  fixed, to find , and 
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4) Check for convergence in all variables. If the convergence
criterion is satisfied STOP. If not set 1 and go back to
step 2) 

k k= +

Clearly there are several ways in which this solution can be 
Obtained, and decisions have to be made depending on the size
Of the problem. To solve all equations coupled requires 80% more
Storage than this way. NO BEST ALGORITHM

SOLUTION DONE IN STEPS

EXAMPLE
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The heat transfer accross the enclosure is calculated from
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TIME DEPENDENCE
Here we must distinguish between PARABOLIC equations
represented by the Diffusion equation 
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and HYPERBOLIC equations such as the general Wave equation
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THE SEMI-DISCRETE GALERKIN METHOD
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As model equation we will use the one-dimensional diffusion equation

0 , 0
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The Galerkin formulation at time t becomes
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t

•

∂
≡
∂

+ =CT KT Q

i

v
0

This is called the 

The matrix ,  is called the
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SEMIDESCRETE GALERKIN FORM

c c c N N dx

CONSISTENT MASS MATRIX

ρ⎡ ⎤= =⎣ ⎦ ∫C

The system  is a system of ordinary differential
equations in time. We now address their solution.

•
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THE θ-METHOD
The θ method is defined in two steps:
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The θ-method is defined in two steps:
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And after assembly
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Look at the results for the example in pages 263-264 in the 
text book
The values θ = 0, 0.5, and 1.0 produce the Galerkin equivalent of
the Euler, Crank-Nicolson and Backward Implicit methods
respectively and are known as

Euler-Galerkin
Crank-Nicolson-Galerkin
Backward-Implicit-Galerkin
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Accuracy and Stability

( )2

It can be shown through truncation error analysis that when
0 and 1 the methods are first order ( ). When 
0.5 the Crank-Nicolson-Galerkin method is second order
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at rates in between 0 and 1.

1) Accuracy:

2) Stability
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2) Stability

i) If 1/2 1 the method is .UNCONDITIONALLY STABLEθ≤ ≤
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is =12 , and the stability limit for Euler-Galerkin ( 0) is
1 . Rewrite 
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2 2 20.375, 0.5625, 0.46875, etc. Clearly as t
the solution converges to the correct stea
T T T= = = →∞

dy state, but the 
time evolution is very poorly approximated and oscillates
 because the time step is too large
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0.4375, ... , 0.49988 there is a great improvement 
in accuracy and the solu  
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3 3 31 4 1 4 1 218 18 TDt tT TΔ Δ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎩ ⎭⎣ ⎦
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The eigenvalue problem is
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MASS LUMPING
One of the important cases is the Euler-Galerkin θ = 0. In matrix
form this is:

11 1n n

t t
+ ⎛ ⎞= − +⎜ ⎟Δ Δ⎝ ⎠

CT C K T Q

This differs from the Euler method only by the presence of the
matrix C, otherwise it would be a fully explicit method. Because of
C Galerkin methods can never be fully explicit. 
To obtain fully explicit formulations using the Galerkin method
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we introduce the concept of . This is of great
practical importance and consists in  in a
consistent way.

MASS LUMPING
DIAGONALIZING C

There are many ways to diagonalize , the only one of interest
to us consists in adding the rows of  placing the result in the
diagonal and setting all off-diagonal elements to zero. That is
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1
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Effect of Mass Lumping

[ ]
[ ]

In our example, using 2 Linear elements we obtain 1/ 2
and 4 . The eigenvalue is 8  and the time step

1 1limit is given by  as opposed to  with the
4 6

consistent Mass Matrix.

T T
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D D

t t
D D

λ
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C
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With 3 Linear elements the eigenvalue problem is

1 2

2 1 1/3 0
3 0  with solution 27 , 0

1 2 0 1/3T T TD D Dλ λ λ
−⎡ ⎤ ⎡ ⎤

− = = =⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦
2 1So the stability limit is  as opposed to  with

27 27
the consistent Mass Matrix.

T TD D
λ λ< <

REMARKS:
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1) Lumped matrices can also be obtained using cosed Newto-Cotes
quadrature rules in which the integration points coincide with the
nodes. For example, if the trapezoidat rule is used to integrate 
Bilinear elements we have

v

1 0 0 0
0 1 0 0
0 0 1 04
0 0 0 1

c abρ
⎡ ⎤
⎢ ⎥
⎢ ⎥= =
⎢ ⎥
⎢ ⎥
⎣ ⎦

C C( , )i j j ijN x y δ=

2) The stability limit is always larger using lumped masses, than
consistent mass matrix. The algorithms are more stable.

3) Algorithms using consistent mass are in general more accurate
than their lumped mass counterpart. Mass lumping can have an
adverse effect in accuracy.

4) The consistent mass can introduce oscillations during the early
stages of the solution, especially if the initial data is not smooth.
These oscillations disappear quickly as time advances but are

20

These oscillations disappear quickly as time advances, but are
unacceptable in many problems. Lumped masses do not suffer
from this problem.

5) The oscillations in consistent formulations are generally known
as “noise” and occur when the time step exceeds a critical time
step related to the solution. 
Unfortunately this critical value may be unreasonably small and
it is not realistic to reduce the time step to that level.

Now we apply the Crank-Nicolson-Galerkin method (θ = ½) to our
example problem. Since the method is unconditionally stable, we
use 3 Linear elements with      = 1 and look at the behavior of the
solution. The resulting system of equations is

TD

1
2 2

1
3 3

4 1 2 1 4 1 2 1 0
27 27

1 4 1 2 1 4 1 2 54
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T T
t D
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+
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1) With Δt = 4/27 the solution for the first 5 time steps is
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The initial oscillations due to the large
Time step are evident as well as their
quickly dying out in time

For Δt = 1/27 the oscillations do not occur, the first 5 time steps are

Using mass lumping and Δt = 4/27 the oscillations practically

22

Using mass lumping and Δt  4/27 the oscillations practically
disappear as shown in the first 5 time steps below

Runge-Kutta Methods (Explicit)

1

Consider the 1-degree of freedom ordinary differential equation
( , ). The second order Runge-Kutta method, also known

as the modified Euler method is defined by: If  is known at 
then  at 

n n

n

dy f y t
dt

y t
y +

=

1 2 1 1 2

1

( , ) ,

time  is found fr

2

m

,

o

,
2n n n

n

n n

n

n
t tk f y t k f y k t y y t k

t t t

+

+
Δ Δ⎛ ⎞= = + + = + Δ ⋅⎜ ⎟

= Δ

⎝ ⎠

+
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( ) ( )

1 2 1 3 2

4 3

2 4

1

The method is ( ) . An algorithm which is ( ) , called the
fourth order or "classical" Runge-Kutta
k ( , ) , ( k , ) , ( k , )

2 2

 method is 

2 2
( k ,

given b

) ,

y

n n n n n n

n n n

t t t tf y t k f y t k f y t

k f y t

O t O t

yt t +

Δ

Δ Δ Δ Δ
= = + + = + +

= + Δ + Δ

Δ

= ( )1 2 3 4k 2k 2k k
6n
ty Δ

+ + + +

The extension to vector systems of the form ( )  is obtained
after first lumping the mass to get ( ) ( ). We can now
re-write the agorithms replacing  by  and  by . That is, the secondy f

−
+ =

= − ≡1
Cu F u 0

u C F u G u
u G

1
1 2 1 2( , ) ,

order Run
(

ge-Kutta method be
, ) ,

2 2

comes

n n
t tt t t+Δ Δ

= = + + = + Δn n n nK G u K G u K u u K

1 2 1 3 2( , ) , ( , ) , ( , )
2 2 2 2

The fourth order method becomes

n n n
t t t tt t t

t

Δ Δ Δ Δ
= = + + = + +

Δ

n n nK G u K G u K K G u K

24

( )1
4 3 1 2 3 4( , ) , 2 2

6n
tt t t + Δ

= + Δ + Δ = + + + +n n nK G u K u u K K K K

Example

Apply the second order Runge-Kutta method to the Burgers 
equation.

( )
2

2

11
4, 0 1 , (0, ) 1 , 1, ) 0 , ( ,0)
10
4

if xu u uu x u t u t u x
t x x if x

ε
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Setting ε = 1, the semidescrete Galerkin form using 4 Linear
elements is
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After lumping and inverting the Mass Matrix
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Now apply the second order Runge-Kutta method
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 becomes  u u . Results are shown below
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The greatest advantage of Explicit methods is that they do not 
require the solution of a linear system of equations. This greatly
reduces the memory requirements and the CPU time.
The greatest disadvantage is the time step limitation, which can be
very severe. When very small time steps must be used the CPU 
time can again grow excessively large. Vectorization and parale-
lization must be used for very large problems.

In general, stability analysis can only be done for linear equations. For
dy
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Runge-Kutta methods we use the linearized equation ( )
where /  and depends on the solution
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These expressions give us a good idea of what the time step 
should be, but ARE NOT EXACT, only approximations. The 
difficulty to calculate the time step limit is a disadvantage of  the
Runge-Kutta methods.

Oden and Wellford (1972) used 4th order Runge-Kutta to simulate
a Couette flow using quadratic triangular elements. The mesh and
domain are
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( , ,0) v( , ,0) 0u x y x y= =


