Steady-State Natural Convection
$\frac{\partial u}{\partial x} + \frac{\partial w}{\partial z} = 0$
$u\frac{\partial u}{\partial x} + w\frac{\partial u}{\partial z} = -\frac{\partial p}{\partial x} + \Pr\left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial z^2}\right)$
$u\frac{\partial w}{\partial x} + w\frac{\partial w}{\partial z} = -\frac{\partial p}{\partial z} + \Pr\left(\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial z^2}\right) + \Pr RaT$
$u\frac{\partial T}{\partial x} + w\frac{\partial T}{\partial z} = \frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial z^2}$
Boussinesq approximation
$\rho = \rho_0 [1 + \beta (T - T_0)] \qquad \qquad$

Non-Linear Operators

$$\mathbf{D}_{1}(u,w) \equiv \frac{\partial u}{\partial x} + \frac{\partial w}{\partial z} = 0$$

$$\mathbf{D}_{2}(u,w,p) \equiv u \frac{\partial u}{\partial x} + w \frac{\partial u}{\partial z} = -\frac{\partial p}{\partial x} + \Pr\left(\frac{\partial^{2} u}{\partial x^{2}} + \frac{\partial^{2} u}{\partial z^{2}}\right)$$

$$\mathbf{D}_{3}(u,w,p) \equiv u \frac{\partial w}{\partial x} + w \frac{\partial w}{\partial z} = -\frac{\partial p}{\partial z} + \Pr\left(\frac{\partial^{2} w}{\partial x^{2}} + \frac{\partial^{2} w}{\partial z^{2}}\right) + \Pr RaT$$
Linearized operators
$$\left[L_{T}\left(u^{k},w^{k}\right)\right][T] = \left[u^{k}\frac{\partial}{\partial x} + w^{k}\frac{\partial}{\partial z} - \frac{\partial^{2}}{\partial x^{2}} - \frac{\partial^{2}}{\partial z^{2}}\right]T = 0$$

$$2$$

TIME DEPENDENCE
Here we must distinguish between PARABOLIC equations
represented by the Diffusion equation

$$\frac{\partial \phi}{\partial t} = \frac{\partial}{\partial x} \left(D \frac{\partial \phi}{\partial x} \right) + \frac{\partial}{\partial y} \left(D \frac{\partial \phi}{\partial y} \right) + S$$
and HYPERBOLIC equations such as the general Wave equation

$$m \frac{\partial^2 \phi}{\partial t^2} + \alpha \frac{\partial \phi}{\partial t} = \frac{\partial}{\partial x} \left(k \frac{\partial \phi}{\partial x} \right) + \frac{\partial}{\partial y} \left(k \frac{\partial \phi}{\partial y} \right) + F(\phi, \dot{\phi})$$
THE SEMI-DISCRETE GALERKIN METHOD
As model equation we will use the one-dimensional diffusion equation

$$\rho c_v \frac{\partial T}{\partial t} = k \frac{\partial^2 T}{\partial x^2} + Q \qquad 0 < x < L, t > 0$$
with appropriate boundary conditions. Now $T = T(x, t)$, so we also need
an initial condition of the form $T(x, 0) = T_0(x)$

7

The weighted residual form is

$$\int_{0}^{L} \left(\rho c_{v} w \frac{\partial T}{\partial t} + k \frac{\partial w}{\partial x} \frac{\partial T}{\partial x} + wQ \right) dx + \left[w \left(-k \frac{\partial T}{\partial x} \right) \right]_{0}^{L} = 0$$
The function T(x,t) is written separating the variables as

$$T(x,t) = \sum_{j} N_{j}(x)T_{j}(t)$$
The Galerkin formulation at time t becomes

$$\sum_{j} \left[\int_{0}^{L} \rho c_{v} N_{i} N_{j} dx \right] \dot{T}_{j} + \sum_{j} \left[\int_{0}^{L} k \frac{\partial N_{i}}{\partial x} \frac{\partial N_{j}}{\partial x} dx \right] T_{j} = \int_{0}^{L} N_{i} Q dx - \left[N_{i} \left(-k \frac{\partial T}{\partial x} \right) \right]_{0}^{L}$$
Where $\dot{T} = \frac{\partial T}{\partial t}$ and leads to a system of equations of the form

$$\dot{\mathbf{CT}} + \mathbf{KT} = \mathbf{Q}$$

This is called the SEMIDESCRETE GALERKIN FORM The matrix $\mathbf{C} = \begin{bmatrix} c_{ij} \end{bmatrix}$, $c_{ij} = \int_{0}^{L} \rho c_v N_i N_j dx$ is called the CONSISTENT MASS MATRIX The system $\mathbf{CT} + \mathbf{KT} = \mathbf{Q}$ is a system of ordinary differential equations in time. We now address their solution. **THE 0-METHOD** The 0-method is defined in two steps: 1) $\mathbf{T} \cong \frac{1}{\Delta t} (\mathbf{T}^{n+1} - \mathbf{T}^n)$ where $\mathbf{T}^n = \mathbf{T}(x, t_n)$ and $t_{n+1} = t_n + \Delta t$ 2) $\mathbf{T} = \theta \mathbf{T}^{n+1} + (1 - \theta) \mathbf{T}^n$ Substituting into $\mathbf{CT} + \mathbf{KT} = \mathbf{Q}$ we have $\left(\frac{1}{\Delta t} \mathbf{C} + \theta \mathbf{K}\right) \mathbf{T}^{n+1} = \left(\frac{1}{\Delta t} \mathbf{C} - (1 - \theta) \mathbf{K}\right) \mathbf{T}^n + \theta \mathbf{Q}^{n+1} + (1 - \theta) \mathbf{Q}^n$

Assuming constant properties, for Linear elements we have

$$c_{ij} = \int_{0}^{h} N_{i}(x)N_{j}(x)dx, \begin{bmatrix} N_{1} \\ N_{2} \end{bmatrix} = \begin{bmatrix} 1-(x/h) \\ x/h \end{bmatrix} \Rightarrow \mathbf{C} = \frac{h}{6} \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$

$$\mathbf{k}_{ij} = \int_{0}^{h} \frac{dN_{i}}{dx} \frac{dN_{j}}{dx}dx \Rightarrow \mathbf{K} = \frac{k}{h} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$
For constant Q, $f_{i} = \int_{0}^{h} N_{i}Qdx \Rightarrow \mathbf{f} = \frac{hQ}{2} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$
So we have

$$\left\{ \frac{\rho c_{v}h}{6\Delta t} \begin{bmatrix} 2 & 1 \\ -1 & 1 \end{bmatrix} + \frac{\theta k}{h} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \right\} \begin{bmatrix} T_{1}^{ni} \\ T_{2}^{ni} \end{bmatrix} = \left\{ \frac{\rho c_{v}h}{6\Delta t} \begin{bmatrix} 2 & 1 \\ -1 & 2 \end{bmatrix} - \frac{(1-\theta)k}{h} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \right\} \begin{bmatrix} T_{1}^{n} \\ T_{2}^{n} \end{bmatrix}$$

$$+ \frac{\theta hQ^{ni}}{2} \begin{bmatrix} 1 \\ 1 \end{bmatrix} + \frac{(1-\theta)hQ^{n}}{2} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
10

Example					
$\frac{\partial T}{\partial t} = D_T \frac{\partial^2 T}{\partial x^2} T(0,t) = 0, T(1,t) = 1, T(x,0) = 0$					
Using two Linear elements, D = 0.1 and θ =1, the element equations are					
$\left\{\frac{1}{12\Delta t}\begin{bmatrix}2&1\\1&2\end{bmatrix}+0.2\begin{bmatrix}1&-1\\-1&1\end{bmatrix}\right\}\begin{bmatrix}T_1^{n+1}\\T_2^{n+1}\end{bmatrix}=\left\{\frac{1}{12\Delta t}\begin{bmatrix}2&1\\1&2\end{bmatrix}\right\}$	$\begin{bmatrix} T_1^n \\ T_2^n \end{bmatrix}$				
And after assembly					
$\begin{cases} \frac{1}{12\Delta t} \begin{bmatrix} 2 & 1 & 0 \\ 1 & 4 & 1 \\ 0 & 1 & 2 \end{bmatrix} + 0.2 \begin{bmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{bmatrix} \begin{cases} T_1^{n+1} \\ T_2^{n+1} \\ T_3^{n+1} \end{cases} = \frac{1}{12\Delta t} \begin{bmatrix} 2 & 1 & 0 \\ 1 & 4 & 2 \\ 0 & 1 & 2 \end{bmatrix}$	$\begin{bmatrix} 0 \\ T_1^n \\ T_2^n \\ 2 \end{bmatrix} \begin{bmatrix} T_1^n \\ T_3^n \end{bmatrix}$				
	11				

Accuracy and Stability

Accuracy:
 It can be shown through truncation error analysis that when θ = 0 and θ = 1 the methods are first order O(Δt). When θ = 0.5 the Crank-Nicolson-Galerkin method is second order O((Δt)²). For any other value 0 < θ < 1 the method converges at rates in between 0 and 1.
 Stability
 i) If 1/2 ≤ θ ≤ 1 the method is UNCONDITIONALLY STABLE.

ii) If $0 \le \theta < 1/2$ the method is *CONDITIONALLYSTABLE*. The time step limitation is given by $\Delta t < \frac{2}{\lambda(1-2\theta)}$ where λ is the largest eigenvalue of the generalized eigenvalue problem $(\mathbf{K} - \lambda \mathbf{C})\mathbf{X} = \mathbf{0}$ ¹³

Lets go back to our example but keep
$$D_T$$
 as a parameter and
still use two linear elements and $\theta = 0$.
$$\frac{\partial T}{\partial t} = D_T \frac{\partial^2 T}{\partial x^2} \quad T(0,t) = 0, T(1,t) = 1, T(x,0) = 0$$
The final equation becomes $\frac{1}{3\Delta t}T_2^{n+1} = \left(\frac{1}{3\Delta t} - 4D_T\right)T_2^n + 2D_T$.
That is $\mathbf{C} = \left[\frac{1}{3}\right]$ and $\mathbf{K} = [4D_T]$. Therefore the only eigenvalue
is $\lambda = 12D_T$, and the stability limit for Euler-Galerkin ($\theta = 0$) is
 $\Delta t < \frac{1}{6D_T}$. Rewrite the equation as $T_2^{n+1} = (1 - 12\Delta tD_T)T_2^n + 6\Delta tD_T$
Now let us try several values for Δt :
1) Set $\Delta t > \frac{1}{6D_T} = \frac{1}{3D_T}$. The recursive relation becomes $T_2^{n+1} = -3T_2^n + 2$
Then starting from $T_2^0 = 0$ we get $T_2^1 = 2, T_2^2 = -4, T_2^3 = 14, T_2^5 = -40$, etc
that diverges very fast.

2) Let $\Delta t = \frac{1}{6D_r}$ the stability limit. The recursive relation becomes
$T_2^{n+1} = -T_2^n + 1$ and starting with $T_2^0 = 0$ we get $T_2^2 = 1, T_2^3 = 0, T_2^4 = 1$, etc. which also diverges as expected.
3) Now we choose $\Delta t = \frac{1}{8D_T} < \frac{1}{6D_T}$ the algorithm becomes
$T_2^{n+1} = -\frac{1}{2}T_2^n + \frac{3}{4}$ and the time history is $T_2^0 = 0, T_2^1 = 0.75$,
$T_2^2 = 0.375$, $T_2^3 = 0.5625$, $T_2^4 = 0.46875$, etc. Clearly as $t \to \infty$ the solution converges to the correct steady state, but the time evolution is very poorly approximated and oscillates because the time step is too large
4) Choosing a smaller $\Delta t = \frac{1}{24D_r}$ gives $T_2^0 = 0, T_2^1 = 0.375,$
$T_2^2 = 0.4375, \dots, T_2^{12} = 0.49988$ there is a great improvement
in accuracy and the solution is monotonic. Exact solution $T_2(1/2D_T) = 0.49542$

Solution using three Linear elements. The element equations are
$\frac{1}{18\Delta t} \begin{bmatrix} 2 & 1\\ 1 & 2 \end{bmatrix} \begin{bmatrix} T_1^{n+1}\\ T_2^{n+1} \end{bmatrix} = \left\{ \frac{1}{18\Delta t} \begin{bmatrix} 2 & 1\\ 1 & 2 \end{bmatrix} - 3D_T \begin{bmatrix} 1 & -1\\ -1 & 1 \end{bmatrix} \right\} \begin{bmatrix} T_1^n\\ T_2^n \end{bmatrix}$
and the final assembled equations after applying boundary conditions become
$\frac{1}{18\Delta t} \begin{bmatrix} 4 & 1 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} T_2^{n+1} \\ T_3^{n+1} \end{bmatrix} = \left\{ \frac{1}{18\Delta t} \begin{bmatrix} 4 & 1 \\ 1 & 4 \end{bmatrix} - 3D_T \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \right\} \begin{bmatrix} T_2^n \\ T_3^n \end{bmatrix} + \begin{bmatrix} 0 \\ 3D_T \end{bmatrix}$
The eigenvalue problem is
$\begin{vmatrix} 3D_T \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} - \frac{\lambda}{18} \begin{bmatrix} 4 & 1 \\ 1 & 4 \end{bmatrix} = 0 \text{ which gives } \lambda_1 = 54D_T, \lambda_2 = 10.8D_T$
Hence the stability limit is $\Delta t < \frac{1}{27D_{T}}$ Note that the smaller
te mesh the smaler the critical Δt . A good estimate is given by $\Delta t < h^2 / (3D_T)$

MASS LUMPING

One of the important cases is the Euler-Galerkin θ = 0. In matrix form this is: 1 (1)

$$\frac{1}{\Delta t}\mathbf{C}\mathbf{T}^{n+1} = \left(\frac{1}{\Delta t}\mathbf{C} - \mathbf{K}\right)\mathbf{T}^n + \mathbf{Q}$$

This differs from the Euler method only by the presence of the matrix **C**, otherwise it would be a fully explicit method. Because of **C** Galerkin methods can never be fully explicit.

To obtain fully explicit formulations using the Galerkin method we introduce the concept of *MASS LUMPING*. This is of great practical importance and consists in *DIAGONALIZING* C in a consistent way.

There are many ways to diagonalize **C**, the only one of interest to us consists in adding the rows of **C** placing the result in the diagonal and setting all off-diagonal elements to zero. That is $\sum_{k=0}^{n} \sum_{i=0}^{n} \sum_{j=0}^{n} \frac{\sum_{i=0}^{n} c_{ik}}{\sum_{i=0}^{n} \frac{\sum_{i=0}^{n} c_{ik}}}{\sum_{i=0}^{n} \frac{\sum_{i=0}^{n} c_{ik}}{\sum_{i=0}^{n} \frac{\sum_{i=0}^{n} c_{ik}}}{\sum_{i=0}^{n} \frac{\sum_{i=0}^{n} c_{ik}}}{\sum_$

$$\overline{\mathbf{C}} = \begin{bmatrix} \overline{c}_{ij} \end{bmatrix} = \begin{cases} \sum_{k} c_{ik} & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$
¹⁷

The matrix $\overline{\mathbf{C}}$ is called the *LUMPED MASS MATRIX*, replacing \mathbf{C} by $\overline{\mathbf{C}}$ in the Euler-Galerkin method gives $\frac{1}{\Delta t} \overline{\mathbf{C}} \mathbf{T}^{n+1} = \left(\frac{1}{\Delta t} \mathbf{C} - \mathbf{K}\right) \mathbf{T}^n + \mathbf{Q}$ Now $\overline{\mathbf{C}}$ can be easily inverted, $\overline{\mathbf{C}}^{-1}$ is diagonal and $c_{ii}^{-1} = 1/c_{ii}$, so $\mathbf{T}^{n+1} = \Delta t \overline{\mathbf{C}}^{-1} \left[\left(\frac{1}{\Delta t} \mathbf{C} - \mathbf{K}\right) \mathbf{T}^n + \mathbf{Q} \right]$ **Effect of Mass Lumping** In our example, using 2 Linear elements we obtain $\overline{\mathbf{C}} = [1/2]$ and $\mathbf{K} = [4D_T]$. The eigenvalue is $\lambda = 8D_T$ and the time step limit is given by $\Delta t < \frac{1}{4D_T}$ as opposed to $\Delta t < \frac{1}{6D_T}$ with the consistent Mass Matrix.

Unfortunately this critical value may be unreasonably small and it is not realistic to reduce the time step to that level. 20

Now we apply the Crank-Nicolson-Galerkin method ($\theta = \frac{1}{2}$) to our example problem. Since the method is unconditionally stable, we use 3 Linear elements with $D_T = 1$ and look at the behavior of the solution. The resulting system of equations is						
$ \left\{ \begin{bmatrix} 4 & 1 \\ 1 & 4 \end{bmatrix} + 27\Delta t \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \right\} \begin{bmatrix} T_2^{n+1} \\ T_3^{n+1} \end{bmatrix} = \left\{ \begin{bmatrix} 4 & 1 \\ 1 & 4 \end{bmatrix} - 27D_T \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \right\} \begin{bmatrix} T_2^n \\ T_3^n \end{bmatrix} + \begin{bmatrix} 0 \\ 54\Delta t \end{bmatrix} $						
1) With $\Delta t = 4/27$ the solution for the first 5 time steps is						
n	T ₂ ⁿ	T ⁿ				,
1	0.17778	0.71111	1 ''' -			f.
2	0.38716	0.60049	0.8-			<i>'</i>
3	0.29665	0.70198			1	
4	0.35486	0.64499	0.6-			
5	0.32036	0.67962			Ą	
The initi	al oscillations d	ue to the large	0.4-	8	<i>.</i>	
Time ate	n ara avidant a	a well as their]	1/1		(x,0.148)
Time ste	ep are evident a	s wen as then		1_1		(x,0.740)
quickly o	lying out in time	9	1			
			0.0	0.333	0.667	1.0

For $\Delta t = 1/2$	7 the osc	illations do not oco	cur, the first 5 time	steps are		
	n	T ₂ ⁿ	Γ_2^n T_3^n			
	1	0.0	0.33333			
	2	0.11111	0.44444			
	3	0.18518	0.51852			
4		0.23457	0.56790			
L	5	0.26749	0.60082			
Using mass lumping and Δt = 4/27 the oscillations practically disappear as shown in the first 5 time steps below						
	n	T ₂ ⁿ	T ₃ ⁿ			
	1	0.17778	0.62222			
	2	0.33185	0.62815			
	3	0.32316	0.66884			
	4	0.33459	0.66652			

0.33321

0.66701

22

The extension to vector systems of the form $\mathbf{C}\dot{\mathbf{u}} + \mathbf{F}(\mathbf{u}) = \mathbf{0}$ is obtained after first lumping the mass to get $\dot{\mathbf{u}} = -\overline{\mathbf{C}}^{-1}\mathbf{F}(\mathbf{u}) \equiv \mathbf{G}(\mathbf{u})$. We can now re-write the agorithms replacing y by \mathbf{u} and f by **G**. That is, the second order Runge-Kutta method becomes $\mathbf{K} = \mathbf{C}(\mathbf{u}^n + t)$, $\mathbf{K} = \mathbf{C}(\mathbf{u}^n + \frac{\Delta t}{K}\mathbf{K} + t + \frac{\Delta t}{K})$, $\mathbf{u}^{n+1} = \mathbf{u}^n + \Delta t\mathbf{K}$

$$\mathbf{K}_{1} = \mathbf{G}(\mathbf{u}^{*}, t_{n}), \quad \mathbf{K}_{2} = \mathbf{G}(\mathbf{u}^{*} + \frac{\Delta t}{2}\mathbf{K}_{1}, t_{n} + \frac{\Delta t}{2}), \quad \mathbf{u}^{*} = \mathbf{u}^{*} + \Delta t \mathbf{K}_{2}$$
The fourth order method becomes
$$\mathbf{K}_{1} = \mathbf{G}(\mathbf{u}^{*}, t_{n}), \quad \mathbf{K}_{2} = \mathbf{G}(\mathbf{u}^{*} + \frac{\Delta t}{2}\mathbf{K}_{1}, t_{n} + \frac{\Delta t}{2}), \quad \mathbf{K}_{3} = \mathbf{G}(\mathbf{u}^{*} + \frac{\Delta t}{2}\mathbf{K}_{2}, t_{n} + \frac{\Delta t}{2})$$

$$\mathbf{K}_{4} = \mathbf{G}(\mathbf{u}^{*} + \Delta t \mathbf{K}_{3}, t_{n} + \Delta t), \quad \mathbf{u}^{n+1} = \mathbf{u}^{*} + \frac{\Delta t}{6}(\mathbf{K}_{1} + 2\mathbf{K}_{2} + 2\mathbf{K}_{3} + \mathbf{K}_{4})$$
Example
Apply the second order Runge-Kutta method to the Burgers

Apply the second order Runge-Kutta method to the Burgers equation.

$$\frac{\partial u}{\partial t} u \frac{\partial u}{\partial x} = \varepsilon \frac{\partial^2 u}{\partial x^2}, \quad 0 < x < 1, \quad u(0,t) = 1, \quad u(1,t) = 0), \quad u(x,0) = \begin{cases} 1 & \text{if } x \le \frac{1}{4} \\ 0 & \text{if } x \ge \frac{1}{4} \end{cases}$$

3/10/2011

5