
3/10/2011

1

Steady-State Natural Convection

2 2

2 2

2 2

0

Pr

Pr Pr

u w
x z

u u p u uu w
x z x x z

w w p w wu w RaT

∂ ∂
+ =

∂ ∂
⎛ ⎞∂ ∂ ∂ ∂ ∂

+ = − + +⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠
⎛ ⎞∂ ∂ ∂ ∂ ∂

+ + + +⎜ ⎟

1

2 2Pr Pru w RaT
x z z x z
+ = − + + +⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

2 2

2 2

T T T Tu w
x z x z

∂ ∂ ∂ ∂
+ = +

∂ ∂ ∂ ∂

0 0

Boussinesq approximation
[1 ()]T Tρ ρ β= + −

2 2

2 2 2

2 2

(,) 0

(, ,) Pr

() Pr Pr

u wu w
x z

u u p u uu w p u w
x z x x z

w w p w wu w p u w RaT

∂ ∂
≡ + =
∂ ∂

⎛ ⎞∂ ∂ ∂ ∂ ∂
≡ + = − + +⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

⎛ ⎞∂ ∂ ∂ ∂ ∂
≡ + = − + + +⎜ ⎟

1D

D

D

Non-Linear Operators

2

3 2 2(, ,) Pr Pru w p u w RaT
x z z x z

≡ + = + + +⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠
D

Linearized operators

() []
2 2

2 2, 0k k k k
TL u w T u w T

x z x z
⎡ ⎤∂ ∂ ∂ ∂⎡ ⎤ = + − − =⎢ ⎥⎣ ⎦ ∂ ∂ ∂ ∂⎣ ⎦

()1 ,v v 0
v

k
k k

k

u
L u u

x y
⎡ ⎤Δ ⎡ ⎤∂ ∂⎡ ⎤⎡ ⎤ ≡ Δ + Δ =⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ∂ ∂Δ ⎣ ⎦ ⎣ ⎦⎣ ⎦

()
2 2

2 2 2,v , v Pr

+ 0

k
k

k k k k k k

k

k

u
uL u p u w u

x x z x y
p

u w p

⎡ ⎤Δ
⎡ ⎤⎛ ⎞∂ ∂ ∂ ∂ ∂⎢ ⎥⎡ ⎤ Δ ≡ + + − + Δ⎢ ⎥⎜ ⎟⎢ ⎥⎣ ⎦ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎣ ⎦⎢ ⎥Δ⎣ ⎦
⎛ ⎞∂ ∂⎡ ⎤+ Δ Δ =⎜ ⎟ ⎢ ⎥

3

+ 0
x

w p
y

+ Δ Δ =⎜ ⎟ ⎢ ⎥∂ ∂⎣ ⎦⎝ ⎠

()
2 2

3 2 2,v , v Pr v

+

k
k

k k k k k k

k

k

u
zL u p u w

x z z x z
p

w u p
x y

⎡ ⎤Δ
⎡ ⎤⎛ ⎞∂ ∂ ∂ ∂ ∂⎢ ⎥⎡ ⎤ Δ ≡ + + − − Δ⎢ ⎥⎜ ⎟⎢ ⎥⎣ ⎦ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎣ ⎦⎢ ⎥Δ⎣ ⎦
⎛ ⎞ ⎡ ⎤∂ ∂

+ Δ Δ⎜ ⎟ ⎢ ⎥∂ ∂⎣ ⎦⎝ ⎠

Algorithm
1) The dependent variables are know at step k, , , ,k k k ku w p T

1 1 1
2) Perform a Newton-Raphson iteration on the fluid
flow equations keeping fixed, to find , and

k k

k k k kT u w p+ + +
= −L a D

1 1 1

1 1
3) Solve for from (,) 0 using the values
of and from the previous step.

k k k
T

k k
T L u w

u w

+ + + +

+ +

⎡ ⎤ =⎣ ⎦
k 1T

4) Ch k f i ll i bl If h

4

4) Check for convergence in all variables. If the convergence
criterion is satisfied STOP. If not set 1 and go back to
step 2)

k k= +

Clearly there are several ways in which this solution can be
Obtained, and decisions have to be made depending on the size
Of the problem. To solve all equations coupled requires 80% more
Storage than this way. NO BEST ALGORITHM

SOLUTION DONE IN STEPS

EXAMPLE

5

5
Solution for

10 , Pr 1Ra = =
8 8 mesh of quadratic
9-node elements
×

()
/ 2

/ 2

The heat transfer accross the enclosure is calculated from

/ 2,
L

L

TNu L y dy
x−

∂
=

∂∫

4.6Nu =

6

3/10/2011

2

TIME DEPENDENCE
Here we must distinguish between PARABOLIC equations
represented by the Diffusion equation

D D S
t x x y y
φ φ φ⎛ ⎞∂ ∂ ∂ ∂ ∂⎛ ⎞= + +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

2

2

and HYPERBOLIC equations such as the general Wave equation

(,)m k k F
t t x x y y
φ φ φ φα φ φ

⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞+ = + +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

7

t t x x y y∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

THE SEMI-DISCRETE GALERKIN METHOD

2

v 2

As model equation we will use the one-dimensional diffusion equation

0 , 0
with appropriate boundary conditions. Now (,), so we also need
 an initial condition of the form

T Tc k Q x L t
t x

T T x t
ρ ∂ ∂

= + < < >
∂ ∂

=
0(,0) ()T x T x=

The weighted residual form is

v
0 0

0
LL T w T Tc w k wQ dx w k

t x x x
ρ ∂ ∂ ∂ ⎡ ∂ ⎤⎛ ⎞ ⎛ ⎞+ + + − =⎜ ⎟ ⎜ ⎟⎢ ⎥∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦

∫
The function T(x,t) is written separating the variables as

(,) () ()j j
j

T x t N x T t=∑
The Galerkin formulation at time t becomes

8

The Galerkin formulation at time t becomes

v
0 0 0 0

LL L L
ji

i j j j i i
j j

NN Tc N N dx T k dx T N Qdx N k
x x x

ρ
∂⎡ ⎤ ⎡ ⎤∂ ⎡ ∂ ⎤⎛ ⎞+ = − −⎢ ⎥ ⎢ ⎥ ⎜ ⎟⎢ ⎥∂ ∂ ∂⎝ ⎠⎣ ⎦⎣ ⎦ ⎣ ⎦

∑ ∑∫ ∫ ∫

Where and leads to a system of equations of the formTT
t

•

∂
≡
∂

+ =CT KT Q

i

v
0

This is called the

The matrix , is called the
L

ij ij i j

SEMIDESCRETE GALERKIN FORM

c c c N N dx

CONSISTENT MASS MATRIX

ρ⎡ ⎤= =⎣ ⎦ ∫C

The system is a system of ordinary differential
equations in time. We now address their solution.

•

+ =CT KT Q

THE θ-METHOD
The θ method is defined in two steps:

9

The θ-method is defined in two steps:

()1
1

11) where (,) and n n n
n n nx t t t t

t

•
+

+≅ − = = + Δ
Δ

T T T T T
12) (1)n nθ θ+= + −T T T

1 1

Substituting into we have
1 1 (1) (1)
t t

n n n nθ θ θ θ

•

+ +

+ =

⎛ ⎞ ⎛ ⎞+ = − − + + −⎜ ⎟ ⎜ ⎟Δ Δ⎝ ⎠ ⎝ ⎠

CT KT Q

C K T C K T Q Q

Assuming constant properties, for Linear elements we have

1

20

1 (/) 2 1
() () ,

/ 1 26

h

ij i j

N x h hc N x N x dx
N x h

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = ⇒ =⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦
∫ C

h

ij
0

1 1
k =

1 1
ji dNdN kdx

dx dx h
−⎡ ⎤

⇒ = ⎢ ⎥−⎣ ⎦
∫ K

1h hQ ⎡ ⎤
∫

10

0

1
For constant Q,

12i i
hQf N Qdx

⎡ ⎤
= ⇒ = ⎢ ⎥

⎣ ⎦
∫ f

1
1 1v v

1
2 2

1

2 1 1 1 2 1 1 1(1)
1 2 1 1 1 2 1 16 6

1 1(1)
1 12 2

n n

n n

n n

T Tc h c hk k
t h t hT T

hQ hQ

ρ ρθ θ

θ θ

+

+

+

⎧ − ⎫ ⎧ − ⎫⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤−
+ = −⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −Δ Δ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦⎩ ⎭ ⎩ ⎭

⎡ ⎤ ⎡ ⎤−
+ + +⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦

So we have

Example
2

2 (0,) 0 , (1,) 1 , (,0) 0T
T TD T t T t T x
t x

∂ ∂
= = = =

∂ ∂
Using two Linear elements, D = 0.1 and θ=1, the element
equations are

1
1 1

1
2 2

2 1 1 1 2 11 10.2
1 2 1 1 1 212 12

n n

n n

T T
t tT T

+

+

⎧ − ⎫ ⎧ ⎫⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
+ =⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥−Δ Δ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦⎩ ⎭ ⎩ ⎭

11

And after assembly

1
1 1

1
2 2

1
3 3

2 1 0 1 1 0 2 1 0
1 11 4 1 0.2 1 2 1 1 4 1

12 12
0 1 2 0 1 1 0 1 2

n n

n n

n n

T T
T T

t t
T T

+

+

+

⎡ ⎤ ⎡ ⎤⎧ − ⎫⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎪ ⎪⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ − − =⎨ ⎬⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥Δ Δ⎪ ⎪⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎩ ⎭⎣ ⎦ ⎣ ⎦

After applying the boundary conditions we get

() () ()1
2 2 2

1
2 2

1 14 1 0.2 2 1 4 1
12 12

1 1which reduces to 0.4 0.2
3 3

n n n

n n

T T T
t t

T T
t t

+

+

+ + − = +
Δ Δ

⎛ ⎞+ = +⎜ ⎟Δ Δ⎝ ⎠

2
1Notice that as , , the correct steady state result.
2

t TΔ →∞ →

12

Look at the results for the example in pages 263-264 in the
text book
The values θ = 0, 0.5, and 1.0 produce the Galerkin equivalent of
the Euler, Crank-Nicolson and Backward Implicit methods
respectively and are known as

Euler-Galerkin
Crank-Nicolson-Galerkin
Backward-Implicit-Galerkin

3/10/2011

3

Accuracy and Stability

()2

It can be shown through truncation error analysis that when
0 and 1 the methods are first order (). When
0.5 the Crank-Nicolson-Galerkin method is second order

() . For any other value 0 1

O t

O t

θ θ
θ

θ

= = Δ
=
Δ < < the method converges

at rates in between 0 and 1.

1) Accuracy:

2) Stability

13

2) Stability

i) If 1/2 1 the method is .UNCONDITIONALLY STABLEθ≤ ≤

()

ii) If 0 1/ 2 the method is .
2The time step limitation is given by where

(1 2)
 is the largest eigenvalue of the generalized eigenvalue

problem

CONDITIONALLYSTABLE
t

θ

λ θ
λ

λ

≤ <

Δ <
−

− =K C X 0

2

2 (0,) 0 , (1,) 1 , (,0) 0T
T TD T t T t T x
t x

∂ ∂
= = = =

∂ ∂

Lets go back to our example but keep as a parameter and
still use two linear elements and 0.

TD
θ =

[]

1
2 2

1 1The final equation becomes 4 2 .
3 3

1That is and 4 . Therefore the only eigenvalue
3

n n
T T

T

T D T D
t t

D

+ ⎛ ⎞= − +⎜ ⎟Δ Δ⎝ ⎠
⎡ ⎤= =⎢ ⎥⎣ ⎦

C K

14

is =12 , and the stability limit for Euler-Galerkin (0) is
1 . Rewrite

6

T

T

D

t
D

λ θ =

Δ < 1
2 2the equation as (1 12) 6n n

T TT tD T tD+ = − Δ + Δ

Now let us try several values for Δt:
1

2 2

0 1 2 3 5
2 2 2 2 2

1 11) Set . The recursive relation becomes 3 2
6 3

Then starting from 0 we get 2, 4, 14, 40, etc
that diverges very fast.

n n

T T

t T T
D D

T T T T T

+Δ > = = − +

= = = − = = −

1 0 2 3 4
2 2 2 2 2 2

12) Let the stability limit. The recursive relation becomes
6
1 and starting with 0 we get 1, 0, 1,

etc. which also diverges as expected.

T
n n

t
D

T T T T T T+

Δ =

= − + = = = =

1 0 1
2 2 2 2

2 3 4

1 13) Now we choose the algorithm becomes
8 6

1 3 and the time history is 0, 0.75,
2 4

0 375 0 5625 0 46875 etc Clearly as t

T T
n n

t
D D

T T T T

T T T

+

Δ = <

= − + = =

→∞

15

2 2 20.375, 0.5625, 0.46875, etc. Clearly as t
the solution converges to the correct stea
T T T= = = →∞

dy state, but the
time evolution is very poorly approximated and oscillates
 because the time step is too large

0 1
2 2

2 12
2

2

2

14) Choosing a smaller gives 0, 0.375,
24

0.4375, ... , 0.49988 there is a great improvement
in accuracy and the solu
Exa

tion is monoto
ct solution (1/

n
2) 0.49542

ic.

T

T

t T
D

T

T D

T

T

=

Δ = = =

= =

Solution using three Linear elements. The element equations are
1

1 1
1

2 2

2 1 2 1 1 11 1 3
1 2 1 2 1 118 18

n n

Tn n

T T
D

t tT T

+

+

⎧ − ⎫⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= −⎨ ⎬⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥−Δ Δ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦⎩ ⎭

and the final assembled equations after applying boundary
conditions become

1
2 2

1

04 1 4 1 2 11 1 3
31 4 1 4 1 218 18

n n

Tn n
T

T T
D

Dt tT T

+

+

⎡ ⎤ ⎧ − ⎫⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= − +⎨ ⎬⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥−Δ Δ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎩ ⎭⎣ ⎦

16

3 3 31 4 1 4 1 218 18 TDt tT TΔ Δ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎩ ⎭⎣ ⎦

1 2

2 1 4 1
3 0 which gives 54 , 10.8

1 2 1 418T T TD D Dλ λ λ
−⎡ ⎤ ⎡ ⎤

− = = =⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

The eigenvalue problem is

2

1Hence the stability limit is Note that the smaller
27

te mesh A goot dhe e sma stimler the ate is gcritical . iven
by

/(3)T

T

t
D

t h D
t

Δ <

Δ <
Δ

MASS LUMPING
One of the important cases is the Euler-Galerkin θ = 0. In matrix
form this is:

11 1n n

t t
+ ⎛ ⎞= − +⎜ ⎟Δ Δ⎝ ⎠

CT C K T Q

This differs from the Euler method only by the presence of the
matrix C, otherwise it would be a fully explicit method. Because of
C Galerkin methods can never be fully explicit.
To obtain fully explicit formulations using the Galerkin method

17

we introduce the concept of . This is of great
practical importance and consists in in a
consistent way.

MASS LUMPING
DIAGONALIZING C

There are many ways to diagonalize , the only one of interest
to us consists in adding the rows of placing the result in the
diagonal and setting all off-diagonal elements to zero. That is

ij

c
c⎡ ⎤= =⎣ ⎦

C
C

C
if

0 if

ik
k

i j

i j

⎧ =⎪
⎨
⎪ ≠⎩

∑

1 1

1 1

1

The matrix is called the , replacing
 by in the E

1
uler-Galerkin method gives

Now can be easily inverted, is diagonal and 1/
1

. so

1n

i ii

n

n

i

LUMPED MASS M

t
t

ATRIX

t
c

t
c

+

−

−

+

−

=

⎛ ⎞= − +⎜ ⎟Δ Δ⎝

Δ
Δ

⎠
=

−

CT C K

C

T

C

C

Q

T

C

C

C

C

n⎡ ⎤⎛ ⎞ +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
K T Q

18

Effect of Mass Lumping

[]
[]

In our example, using 2 Linear elements we obtain 1/ 2
and 4 . The eigenvalue is 8 and the time step

1 1limit is given by as opposed to with the
4 6

consistent Mass Matrix.

T T

T T

D D

t t
D D

λ
=

= =

Δ < Δ <

C
K

3/10/2011

4

With 3 Linear elements the eigenvalue problem is

1 2

2 1 1/3 0
3 0 with solution 27 , 0

1 2 0 1/3T T TD D Dλ λ λ
−⎡ ⎤ ⎡ ⎤

− = = =⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦
2 1So the stability limit is as opposed to with

27 27
the consistent Mass Matrix.

T TD D
λ λ< <

REMARKS:

19

1) Lumped matrices can also be obtained using cosed Newto-Cotes
quadrature rules in which the integration points coincide with the
nodes. For example, if the trapezoidat rule is used to integrate
Bilinear elements we have

v

1 0 0 0
0 1 0 0
0 0 1 04
0 0 0 1

c abρ
⎡ ⎤
⎢ ⎥
⎢ ⎥= =
⎢ ⎥
⎢ ⎥
⎣ ⎦

C C(,)i j j ijN x y δ=

2) The stability limit is always larger using lumped masses, than
consistent mass matrix. The algorithms are more stable.

3) Algorithms using consistent mass are in general more accurate
than their lumped mass counterpart. Mass lumping can have an
adverse effect in accuracy.

4) The consistent mass can introduce oscillations during the early
stages of the solution, especially if the initial data is not smooth.
These oscillations disappear quickly as time advances but are

20

These oscillations disappear quickly as time advances, but are
unacceptable in many problems. Lumped masses do not suffer
from this problem.

5) The oscillations in consistent formulations are generally known
as “noise” and occur when the time step exceeds a critical time
step related to the solution.
Unfortunately this critical value may be unreasonably small and
it is not realistic to reduce the time step to that level.

Now we apply the Crank-Nicolson-Galerkin method (θ = ½) to our
example problem. Since the method is unconditionally stable, we
use 3 Linear elements with = 1 and look at the behavior of the
solution. The resulting system of equations is

TD

1
2 2

1
3 3

4 1 2 1 4 1 2 1 0
27 27

1 4 1 2 1 4 1 2 54

n n

Tn n

T T
t D

tT T

+

+

⎧ − ⎫⎡ ⎤ ⎧ − ⎫⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
+ Δ = − +⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − Δ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎩ ⎭⎣ ⎦ ⎩ ⎭⎣ ⎦

1) With Δt = 4/27 the solution for the first 5 time steps is

21

The initial oscillations due to the large
Time step are evident as well as their
quickly dying out in time

For Δt = 1/27 the oscillations do not occur, the first 5 time steps are

Using mass lumping and Δt = 4/27 the oscillations practically

22

Using mass lumping and Δt 4/27 the oscillations practically
disappear as shown in the first 5 time steps below

Runge-Kutta Methods (Explicit)

1

Consider the 1-degree of freedom ordinary differential equation
(,). The second order Runge-Kutta method, also known

as the modified Euler method is defined by: If is known at
then at

n n

n

dy f y t
dt

y t
y +

=

1 2 1 1 2

1

(,) ,

time is found fr

2

m

,

o

,
2n n n

n

n n

n

n
t tk f y t k f y k t y y t k

t t t

+

+
Δ Δ⎛ ⎞= = + + = + Δ ⋅⎜ ⎟

= Δ

⎝ ⎠

+

23

() ()

1 2 1 3 2

4 3

2 4

1

The method is () . An algorithm which is () , called the
fourth order or "classical" Runge-Kutta
k (,) , (k ,) , (k ,)

2 2

 method is

2 2
(k ,

given b

) ,

y

n n n n n n

n n n

t t t tf y t k f y t k f y t

k f y t

O t O t

yt t +

Δ

Δ Δ Δ Δ
= = + + = + +

= + Δ + Δ

Δ

= ()1 2 3 4k 2k 2k k
6n
ty Δ

+ + + +

The extension to vector systems of the form () is obtained
after first lumping the mass to get () (). We can now
re-write the agorithms replacing by and by . That is, the secondy f

−
+ =

= − ≡1
Cu F u 0

u C F u G u
u G

1
1 2 1 2(,) ,

order Run
(

ge-Kutta method be
,) ,

2 2

comes

n n
t tt t t+Δ Δ

= = + + = + Δn n n nK G u K G u K u u K

1 2 1 3 2(,) , (,) , (,)
2 2 2 2

The fourth order method becomes

n n n
t t t tt t t

t

Δ Δ Δ Δ
= = + + = + +

Δ

n n nK G u K G u K K G u K

24

()1
4 3 1 2 3 4(,) , 2 2

6n
tt t t + Δ

= + Δ + Δ = + + + +n n nK G u K u u K K K K

Example

Apply the second order Runge-Kutta method to the Burgers
equation.

()
2

2

11
4, 0 1 , (0,) 1 , 1,) 0 , (,0)
10
4

if xu u uu x u t u t u x
t x x if x

ε

⎧ ≤⎪∂ ∂ ∂ ⎪= < < = = = ⎨
∂ ∂ ∂ ⎪ >

⎪⎩

3/10/2011

5

Setting ε = 1, the semidescrete Galerkin form using 4 Linear
elements is

2
2 3 2 3 3

2
2 2

3 2 3 4 2 2 3 3 4 4

4
2

3 4 3 3 4

1 1 268 4
6 6 64 1 0

1 1 1 1 11 4 1 4 8 4
24 6 6 6 6

0 1 4 1 14 8
6 6

u u u u u
u
u u u u u u u u u u
u

u u u u u

⎡ ⎤− + + −⎢ ⎥
⎡ ⎤ ⎡ ⎤ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − − + − − − + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎢ ⎥− + − −
⎢ ⎥⎣ ⎦

Aft l i d i ti th M M t i

25

After lumping and inverting the Mass Matrix

()

()

()

2
2 3 2 3 3

2
2 2

3 2 3 4 2 2 3 3 4 4

4
2

3 4 3 3 4

4 48 24 25
5

2 24 48 24
3

4 24 48
5

u u u u u
u
u u u u u u u u u u
u

u u u u u

⎡ ⎤− + − − +⎢ ⎥
⎡ ⎤ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= − − + + + − −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦

⎢ ⎥− + +
⎢ ⎥⎣ ⎦

Now apply the second order Runge-Kutta method

()()
() ()()

()()

2

2 3 2 3 3

12
2 2

13 2 3 4 2 2 3 3 4 4

14 2

3 4 3 3 4

4 48 24 25
5

2 24 48 24
3

4 24 48
5

n n n n n

n n n n n n n n n

n n n n n

u u u u u
k
k u u u u u u u u u
k

u u u u u

⎡ ⎤− + − − +⎢ ⎥
⎡ ⎤ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= = − − + + + − −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦

⎢ ⎥− + +
⎢ ⎥⎣ ⎦

1K

() () ()()2 12 3 13 2 12 3 1348 244
n n n nu k u k u k u kα α α α⎛ ⎞− + + + − + +

⎜ ⎟
⎡ ⎤
⎢ ⎥

Set
2
tα Δ

=

26

() () ()()
()

() () ()
()() ()() ()

() ()

2 12 3 13 2 12 3 13

2

3 13

2
22

2 12 3 13 2 12

2 23 2

2 12 3 13 3 13 4 14 4 1424

3 13 4 14

4
5 25

24 48 242
3

24 484
5

n

n n n

n n n n n

n n

u k

k u k u k u k
k

u k u k u k u k u kk

u k u k u

α

α α α

α α α α α

α α

⎜ ⎟
⎜ ⎟− + +⎝ ⎠

⎡ ⎤ ⎛ ⎞+ − + + +⎢ ⎥ ⎜ ⎟= = −⎢ ⎥ ⎜ ⎟⎜ ⎟+ + + − + + − +⎢ ⎥ ⎝ ⎠⎣ ⎦

+ − + +

K

()
()()

2

3 13

3 13 4 14

n

n n

k

u k u k

α

α α

⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎛ ⎞+
⎢ ⎜ ⎟ ⎥
⎢ ⎜ ⎟ ⎥+ + +⎝ ⎠⎣ ⎦

n+1 n+1
2 2 22

1 n+1 n+1
4 3 23
n+1 n+1
4 4 24

u u
 becomes u u . Results are shown below

u u

n

tk
tk
tk

+

⎡ ⎤ ⎡ ⎤+ Δ
⎢ ⎥ ⎢ ⎥= + Δ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥+ Δ⎣ ⎦ ⎣ ⎦

u

27

The greatest advantage of Explicit methods is that they do not
require the solution of a linear system of equations. This greatly
reduces the memory requirements and the CPU time.
The greatest disadvantage is the time step limitation, which can be
very severe. When very small time steps must be used the CPU
time can again grow excessively large. Vectorization and parale-
lization must be used for very large problems.

In general, stability analysis can only be done for linear equations. For
dy

28

Runge-Kutta methods we use the linearized equation ()
where / and depends on the solution
For the

.
second ord

er

dy y f t
dt

f y
α

α
+ =

= ∂ ∂

For the f
method th

ourth ord
e stability limit

er method we get 2.8 5
is

7
 2.t

tα
α

Δ ≤
Δ ≤

These expressions give us a good idea of what the time step
should be, but ARE NOT EXACT, only approximations. The
difficulty to calculate the time step limit is a disadvantage of the
Runge-Kutta methods.

Oden and Wellford (1972) used 4th order Runge-Kutta to simulate
a Couette flow using quadratic triangular elements. The mesh and
domain are

0,2 0,2

The boundary conditions are
(,0.2,) 0.1 , v(,0.2,) 0.0
(,0.0,) v(,0.2,) 0.0

v 0

0.00362 , 0.00242
(0) (0) 0

x x

u x t x t
u x t x t

up
x x

μ

μ ρ
= =

= =
= =

∂ ∂⎡ ⎤ ⎡ ⎤− + = =⎢ ⎥ ⎢ ⎥∂ ∂⎣ ⎦ ⎣ ⎦
= =

29

(, ,0) v(, ,0) 0u x y x y= =

