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THE PETROV-GALERKIN METHOD
Consider the Galerkin solution using Linear elements of the 
modified convection-diffusion equation
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 is a parameter between 0 and 1. If 0, we will have the discrete

Galerkin form of the convective-diffusion equation. If 1 we 
recover the Upwind form.
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recover the Upwind form.

Because we expect that there is a value of  such that the term uh/2
gives us the amount of numerical diffusion necessary to obtain the 
correct answer, we call this term the " " Balancing Diffusion
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The Galerkin discretization using Linear elements of uniform 
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It follows that the solution is non-oscillatory if 1 .
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We define the Truncation Error  as the difference between the
original differential equation and the modified discrete form, i.e.
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Keeping track of derivatives up to order 8, we get
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Now we use the differential equation written as 
to write all higher order derivatives in terms of the second

derivative. That is we get the recursive relation 
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Substituting into the truncation error we get
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The total truncation error can be expressed in terms of a numerical
diffusion that takes the form

1 2 1 tanh sinh( )
2 2 iTE αγ γ γ γ φ

γ
⎡ ⎤⎧ ⎫⎛ ⎞ ⎛ ⎞= + −⎨ ⎬⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎩ ⎭⎣ ⎦

2

1Set  ( ) 2 1 tanh sinh( )
2 2

f αγ γγ γ γ
γ

⎧ ⎫⎛ ⎞ ⎛ ⎞= + −⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎩ ⎭ 3

tanh( / 2) sinh( )1) Set 0, and re-write  ( ) as ( ) 1 .
( / 2)

sinh( ) tanh( / 2)Because 0  and 1 0 for all , ( ) 0 for all .
( / 2)

Therefore, the Galerkin method is always .

f f

f

underdiffused

γ γα γ γ
γ γ

γ γ γ γ γ
γ γ

⎛ ⎞
= = −⎜ ⎟

⎝ ⎠
⎛ ⎞

> − < <⎜ ⎟
⎝ ⎠

12) Set 0 and solve for , we get  =coth
2

TE γα α
γ

⎛ ⎞= −⎜ ⎟
⎝ ⎠

optThis value of  is called the optimal value . It produces the
exact solution when the coefficients are constant and 
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superconvergent solutions in the general case.  and  are 
shown below
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Solution using 10 Linear elements (h=0.1)

EXAMPLE

2

2

Use 10 Linear elements to solve the equation
60 0, 1 2, (1) 1, (2) 0d d x

dx x dx
φ φ φ φ− + = < < = =

Solution is exact to 4 significant digits, the average velocity was used
in each element
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Evaluating  involves a coth, and as seen in the previous figure 
 and  are very close after 5. The amount of additional

numerical diffusion added using  instead of  at 8 is less 
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The concept of Balancing Diffusion, although effective in simple
situations is difficult to use in more complex problems. We will 
re-cast the ideas under the framework of a PETROV-GALERKIN
method that can be extended to all cases in 1-, 2-, and 3-
dimensions.

The name Petrov-Galerkin refers to a method in which the
weighting functions are NOT the same as the shape functions in a
Galerkin formulation. 6
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Lets go back to the weighted residual form of the modified 
convective-diffusion equation ignoring the boundary terms that 
are not important in this discussion. We have
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The Galerkin formulation is (using linear shape functions)
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Now we define  , then the weak form 
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Petrov-Galerkin methods using quadratic elements have also 
been built. In this case two parameters α and β are needed due
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This is the basic Petrov-Galerkin method for the one-dimensional
Convection –Diffusion equation.
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The weighted residual form is 
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to the different nature of the internal node. Here we will restrict 
ourselves to the use of linear elements.

Introduce a non-zero source term in the equation.
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The following example illustrates how the Petrov-Galerkin method
Automatically extends consistently to treat other terms in the
Equation. We set D = 0 and look at the equation

1 2 0 0.75
( ), 0 1.5, (0) 0, ( ) 2( 1) 0.75 1.0

0 0
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Two numerical solutions with h = 0.1 are shown in the next slide.
1) Using added balancing diffusion, which does nothing to the 

right hand side.
2) Petrov-Galerkin, which consistently weights the right hand side. 9

Note that in this problem , therefore full upwinding ( 1)
is required.
In page 329 in the text it is shown that the Petrov-Galerkin solution
is exact if the source term is piecewise linear and nodes 

γ α= ∞ =

are
placed at the points of slope discontinuity.
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Reaction – Diffusion Equations
2

2

d dD u a S
dx dx
φ φ φ− + + =

When the reaction term a  dominates, these equations also experienece
numerical oscillations. Stable solutions can be obtain by means of two
stabilizing parameters, but it becomes more difficult to dete

φ

rmine them.
References to the basic work are given in the text, page 331.

THE PETROV – GALERKIN METHOD IN TWO 
DIMENSIONSDIMENSIONS
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We assume that the velocity vector is constant for convenience.
This can be for example the average fluid velocity in the element.
Consider a rectangular bilinear element as shown in the figure

We introduce a local (element – wise) rotation of the operator to a
new coordinate system s –t such that s is aligned in the direction 
of the velocity vector. In this new coordinate system the equation
becomes 

0T
st st s

φφ ∂
−∇ ∇ + =

∂
D V
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 is the magnitude of the velocity and the gradient  
cos sin

where    is the rotation matrix.
sin cos
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Now re-write the equation in the form
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This equation can be viewed as a one-dimensional convection-
diffusion equation in the s – direction, with a source term.diffusion equation in the s direction, with a source term.

From this point of view, we must introduce abalancing diffusion
only in the s – direction. That is an “anisotropic balancing diffusion”.
Given by
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REMARKS: 1)  is an average element length defined later.
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The modified equation, after adding the balancing diffusion is
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The weak Galerkin formulation is written as
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Finally, after some more algebraic manipulations we can write
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This last expression suggests the Petrov – Galerkin weights

v
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which are a natural extension of the one-dimensional weights,
and do not introduce CROSS–FLOW NUMERICAL DIFFUSION
Notice that the contribution to the line integral was omitted, the
Functions act only in the interior of the domain. It can be shown
That this is the consistent way to formulate the method. 16

EXAMPLE
Advection of a cosine hill in a rotating field defined by

v
The outside boundary is  x 2 and y 2 where =0.
Along the internal boundary OA  is prescribed as a cosine
as shown in the figure. We set 

u y x
φ

φ

= − =
= =

0 so this is a purely convective
situation.

D =

Galerkin
Upwind

Petrov-Galerkin
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In practice the Petrov – Galerkin weights are used only in the
convective term and the source term. In 2- and 3- dimensions it
amounts to ignoring the cross derivative constants arising from the 
diffusion term. However it can be shown that this does not affect
the accuracy.

( )1 2 1 2

The element length  in the direction of flow is given by
1 where  and  are given by

and as shown in the figure
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= + − −

= + − −
18
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Algorithms for convective flow stabilization have also been 
developed for triangles (Tabata, Kikuchi etc.) we will not describe
them here.
A significant number of algorithms similar to our Petrov – Galerkin
and variations on it have also been proposed. Most notably the so
Called discontinuity capturing methods. Most of these methods 
Introduce parameters for which we do not have a clear criterion to
Choose, or make the problem non-linear.
Th P t G l ki th d b id d ti lThe Petrov – Galerkin method can be considered a particular case
Of a more general family of algorithms known as the Galerkin-
Least-Squares method. Which we now explain in one dimension. 

2

Write the residual of the one-dimensional convective-diffusion

equation  0   a least squares 
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ial functions.
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Approximating  with shape functions  (where repeted
indices imply summation) the conditions for the minimum are
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on the other hand, the Galerkin formulation of the equation is

0
L

j j
i j

dN dNdN k u S dx
dx dx dx

φ
⎡ ⎤⎛ ⎞⎛ ⎞
− + − =⎢ ⎥⎜ ⎟⎜ ⎟

⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦
∫

The Galerkin – Least- Squares formulation consists in satisfying
a linear combination of the two equations above. That is
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This is clearly a Petrov-Galerkin formulation using the weight function
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Using linear elements and defining  we recover the original
2

h
u

ατ =
2

Petrov-Galerkin formulation.
u

Even more general formulations, the Generalized-Galerkin-Least-
Squares have been proposed to deal with time dependent
Convection-Diffusion problems. Where two-parameters must be
determined.

Methods have been proposed in which up to four parameters are
added in the formulation.
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THREE DIMENSIONS
The extension to three dimensions is obtained by means of a
Local rotation in the direction of flow and the addition of an 
Anisotropic diffusion in the same way as two dimensions. The 
Petrov - Galerkin weighting functions obtained are

v , v
2

i i i
i i
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Non-linear Equations
In simulations of fluid flow we must solve the Burgers equation in
One dimension and the Navier-Stokes equations in two and three
Dimensions, which are all non-linear in the convective terms.

2

2First consider the Burgers equation  0
1) It was established (H-Z 1979) that using the Petrov-Galerkin
method in conjunction with a Newton-Raphson iteration leads
to very slow convergence

d u duu
dx dx

ε− + =

and sometimes instability with strongto very slow convergence and sometimes instability with strong
convection.
2) Using a direct iteration convergence was faster for the convection
dominated cases. An alternative was also developed using modified
quadrature formulae (Hu.-1979) to resolve these problems.

Example
2

2 0, (0) 1, (1) 0, ( )

Ax

Ax

d u du Bu u u u x A
dx dx

B

e

e

ε

ε

ε ∗

⎛ ⎞
−⎜ ⎟− + = = = = ⎜ ⎟⎜ ⎟+⎝ ⎠24



3/31/2011

5

A and B are integration constants. We will set =0.1 and use 10
linear elements using Galerkin and Petrov-Galerkin combined 
with Newton-Raphson and a direct iteration method. Convergence
is determined w

ε

-4
hen the difference at every node between two 

consecutive iterations is less than 10 .

Note that the Galerkin solution is non-oscillatory, even though 
The cell Peclet number Pe = 10 in some elements. However, 
near the boundary layer at x = 1, Pe = 0.231.

An important difference with linear problems is that Pe is variable
and depends on the solution. Therefore it is not possible to predict
the onset of oscillations a priori.

25

Notice that the Newton-Raphson-Petrov-Galerkin method becomes
less efficient as convection dominates.
In simulations of the Navier-Stokes equations eventually it fails to
converge (Hu 1979, H-Z 1979).

26

For the Navier-Stokes equations, even though Newton-Raphson
Is the method of choice to get steady-state solutions directly,
There are three problems that arise:
1) For very highly convective flows the Petrov-Galerkin method

must be further modified to achieve convergence. There is no
agreement as to what the best way is.

2) For large Reynolds numbers the solution must be obtained
incrementally starting from a low Re, then increasing the Re
number and using the previous solution as initial guess until
the desired value of Re is reached.
3) In many flow problems as Re increases there are bifurcations
points where the solution changes to a different mode that is
physically more stable. Direct solutions are rarely capable to 
Switch to the new mode and continue along the branch that is 
Physically unstable.

For these reasons we will prefer to use time dependent algorithms
To reach steady state. These always follow the physically stable
Branches and allow us to use Petrov-Galerkin as in linear systems.

27

EXAMPLE

1 1 1
1

0

Let us use direct substitution to solve the Burgers equation.

are obtained from  0
k k k

n k k
i

dw du duu w u dx
dx dx dx

ε
+ +

+ ⎛ ⎞
+ =⎜ ⎟

⎝ ⎠
∫

This differs from Galerkin in that the weighting functions

 change at each iteration because the
2

1

k
k i
i i

k k

dNhw N
dx

h

α
= +

⎛ ⎞ 1cell Peclet number is , and coth
2

k k
k k

k

u h γγ α
ε γ

⎛ ⎞
= = −⎜ ⎟

⎝ ⎠
We have chosen to apply the Petrov-Galerkin method to the
non-linear problems finding α in the same way as in the linear 
case. It is far from obvious that this should be the right way to do it. 
However, it was proved (H-E 1982) using Taylor series expansions
that at least the first two terms in the error expansion of the 
Burgers equation are identical to the linear case. 28

EXAMPLE

1

0

For the Newton-Raphson iteration the Petrov-Galerkin iteration

takes the form  0
k k

k k kdw d u d u duw u w u dx
dx dx dx dx

ε
⎛ ⎞Δ Δ

+ + Δ =⎜ ⎟
⎝ ⎠
∫

This equation is of the Convection-Diffusion-Reaction type, and
That is the reason why the Petrov-Galerkin method as we have 
Applied is not sufficient to stabilize the calculations when it is
Highly convection dominatedHighly convection dominated.

Various modifications to resolve this situation have been proposed
(see e. g. Id 1996). A simple way to improve the stability is to use
The Petrov-Galerkin weights in the middle term only, and the shape
Functions in the other terms. This is effective to stabilize the 
Calculations but it sacrifices some of the accuracy.
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