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TIME DEPENDENT CONVECTION-DIFFUSION

We now consider the equation  ,  with
t

initial condition ( ,0) ( ) and appropriate boundary conditions
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Two new numerical difficulties arise that were not present before.
These are NUMERICAL DAMPING and NUMERICAL PHASE LAG,
and we will illustrate them through the following example:
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Let us solve the advection equation  0.25 0  in 0<x<2
t

with initial condition  ( ,0)
and boundary conditions (0,t) (2,t) 0.
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We will apply the Crank-Nicolson-Galerkin ( 1/ 2) method
with 80 Linear elements, that is 0.025, and time step 0.09.
The initial condition and the solution at 2.07 and 4.05 are
shown in the fig
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The solution is a pure translation of the initial spike. The analytical
expression is 2800 0 25( 1)t⎡ ⎤⎣ ⎦
expression is 800 0.25( 1)( , ) x tx t eφ ⎡ ⎤⎣ ⎦− − +=
The results are very discouraging:
1) The original amplitude has decreased by about 40% (Damping)
2) The spike that should be at x = 0.768 at t = 2.07 and at x = 1.26

at t = 4.05 is only at x = 0.73 and x = 1.22 respectively (out of
phase)

3) There is an enormous amount of numerical “DISPERSION” or
“NOISE” in the solution. 2
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2Let us now solve  0.25 0.0003125 0.0 using the
t

Galerkin method and Linear 2-dimensional space-time elements.
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The initial condition is chosen so that the exact solution is
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The mesh size is 0.025 and the time step 0.08. (this gives 20)h t γ= Δ = =
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The exact and numerical solution are shown at times 0.0, 2.0
and 4.0.
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The amplitude of the solution at 2.0 is only 60% of the exact value.
At 4.0 it is 55%. 
Some phase lag can also be observed.

t
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The space-time finite element scheme used here is equivalent to 
the -method with 2 /3.θ θ =

NUMERICAL DAMPING
Go back to the purely convective equation 0  on  0 2

and write the solution in complex Fourier series form.
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The coefficients  and the wave numbers  depend on he initial
condition. Define the  as
the ratio of the amplitude of the n-th Fourier component at time
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In the absence of numerical error, the solution must not change
the amplitude of the Fourier components in time.
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To understand the behavior of the numerical solution, we write it

as a discrete Fourier series   ( , ) ( ) .k
K
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The coefficients  depend on the initial condition;  is a constant;

 is the number of elements contained in 0  (one half of the
2domain); -1 and  is a wave number.
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The corresponding frequencies are    and measure the number
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of wavelengths contained in each 2  interval. The lowest, k 0,
corresponds to a time independent term. The highest ,  has wave

number

L
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2  and gives the number of points that will
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 represent represent a sine wave between 0 and 2 .
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The finite series above is the exact solution generated by the
numerical method when the        are the Fourier coefficients of
the initial condition.

ka
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The  is defined as

n
j
n
j

Numerical Amplification Factor

NAF
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ξ
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dThe  is the numerical error  in the amplification factor

for a component j.      .
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To propagate a solution without amplification error we need 1.
d

DAMPING
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EXAMPLE

Discretize the convective equation 0 using the Crank-
Nicolson-Galerkin method with linear elements. We obtain
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Because  can attain any value we set . Using Euler's equation 

we have   cos  sin  and   cos  sini i
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REMARKS:
1) Noting that  is a wave number,  2 /  if L is the wave length,

then 2 . This is convenient for us to plot the

magnitude of  versus the number of elements per wave length in a
cove
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nient way. 
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2) The expression for  is of the form  therefore 1 and the
Crank-Nicolson-Galerkin method HAS NO DAMPING. This is 
good because the algorithm preserves the amplitude of the Fourier
components, but it 

z
z

ξ ξ ≡

is bad because the method has no mechanism 
to eliminate perturbations. Moreover
3) We define the Courant number  as  .
If the mesh and time step are chosen so that 1, a particle of fluid
will travel exactly the distance  in one time step. The peak translates 
from one node

u tc c
h
c

h

Δ
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=

to the next and the solution is excellent.from one node to the next and the solution is excellent.
However, our introductory example has 0.9, and the results were
disastrous. Therefore, the mesh could not capture the peak except 
every 10 time steps. The algorithm does one of two things:

c =

i) Assume that the peak is attained at the node closest to it, thus
changing the speed of propagation and introducing phase lag.

ii) Give the correct value at the closest node, and to conserve mass, redistribute
the excess mass throughout the domain. Due to lack of memory (the method 
only knows what happens at , but once thent t=  amplitude decreases it cannot 
increase back up. Thus producing damping and noise. 10

What actually happens is a combination of the two. This introduces
dispersion and numerical damping. Moreover, because there is no
damping in the algorithm (|ξ| = 1) there is no mechanism to kill 
the oscillations so they just stay there and as the amplitude 
continues to decay they eventually destroy the solution.

EXAMPLE
 Apply the Petrov- Galerkin method to the purely convective equation 

0,  use the -method with 1. The difference equation isu
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REMARKS:
1) The algorithm has too much
damping. For 1, 0.577 if
six elements per wavelength are
used, and 0.862 using 15
elements per wave length. 15 
elements is very fine resolution
and still reduces the ampl

c ξ

ξ

= =

=

itude by
14% in one time step.
2) A bl h2) A reasonably accurate scheme
should resolve a wave with about
6 elements reasonably well to be
affordable.

3) The damping is reduced as the Courant number decreases. However,
a lower Courant number requires a smaller time step. Note that for c=2.0 
the damping is very strong. In general we should not calculate with a
Courant number greater than 1 if we need to capture the time response
accurately. But if only the steady-state is of interest the damping
provides additional stability.
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4) In this example 1, so the method is unconditionally stable.
Because the NAF is less than 1, perturbations in the solution
will decrease and eventually disappear in time. But if >1 
perturbations w

θ
ξ

ξ

=

ill grow and and the algorithm become unstable.
The stability is governed by

1
1
1

stable
neutrally stable

t bl
ξ

<⎧
⎪ =⎨
⎪
⎩ 1 unstable⎪ >⎩

This criterion for stability is only useful for linear equations, but it
can be extended to systems of linear equations as well.

EXAMPLE

1
1

Let us now use 0 to discretize the convective equation. The
difference equation is    ( )  fully explicit. n n n n

j j j jc
θ

φ φ φ φ+
−

=
= − +
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( )
1

2 2is found to be     1 4 (1 )sin ( / 2)
and the stability condition 1 becomes

c cξ ξ θ
ξ

= − −
≤

21 1 4 (1 )sin ( / 2) 1
Manipulating this expression algebraically we find that the first
inequality is always satisfied.

c c θ− ≤ − − ≤

The second inequality turns out to be satisfied only if c 1. So the

method is stable when     ht
u

≤

Δ ≤

( ) ( ) ( )

von Neumann's method can be extended to two dimensions by
expressing the Fourier components of the numerical solution in
the form   , , . The damping 
characteristic and time

n n
j n j

ik j x im yx y t e eφ φ ξ Δ Δ≡ =
step limitations if any can be obtained.

NUMERICAL PHASE ERROR
The phase error is related to the translational velocity of each
of the Fourier components of the numerical solution. 14
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The phase angle of a Fourier component is given by
Im( )tan
Re( )
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In one time step, the real wave moves a distance given by
2 /  where  is the number of time steps required to move 

one full wave length. Therefore,  . Replacing in the 
expression for w
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The phase error is defined asΘ
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Im( )= tan
Re( )
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EXAMPLE
1

1

1

The phase angle for the explicit convective algorithm ( )
sinis given by    tan . The phase error  is shown in the 

1 (1 cos )
figure.
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15

Remarks:
1) For c = 0.25 and 0.5 the phase

error can be large. However for
c = 0.5 or 1.0 there is no phase
error.

2) In a uniform mesh, the shortest
wavelength that can be captured
is L = 2h . However this will give 
no accuracy In practice we buildno accuracy. In practice we build
algorithms so that the waves of
interest can be captured with 
about 6 elements.

3) When using irregular meshes in hyperbolic problems we must
be careful when going from a fine mesh to a coarser one,
because the coarser mesh will not be able to capture the
smallest wave length carried by the fine mesh. This will result
in the internal reflection of the short wave lengths. Modifications
to the algorithms are needed to avoid them.

16

PETROV-GALERKIN METHOD FOR TIME-DEPENDENT
CONVECTION-DIFFUSION 

There are many ways to obtain stabilized algorithms for time
dependent problems. We will only look in detail at a natural 
extension of the method developed for the steady state case.

We already saw that a method based on bilinear time-space
elements is over diffusive. This remains true if Petrov-Galerkin
weights are used. To avoid this, we construct weighting functions
that are parabolic in time. The time variation is given by

4( ) 1 tT t
t t
⎛ ⎞= −⎜ ⎟Δ Δ⎝ ⎠

We construct weighting functions of the form ( ) ( )
and number them as usual, counter-clockwise from the lower
 left node. ( ) are the one-dimensional linear shape functions.

i i

i

M N x T t

N x

=
17

1 4

2 3

The weighting functions ( , ) are

( , ) ( , ) 4 1 1

4( , ) ( , ) 1

iM x t
x t tM x t M x t
h t t

xt tM x t M x t
h t t

⎛ ⎞ ⎛ ⎞= = − −⎜ ⎟ ⎜ ⎟Δ Δ⎝ ⎠ ⎝ ⎠
⎛ ⎞= = −⎜ ⎟Δ Δ⎝ ⎠

1 2Only  and  are needed to define
the algorithm.

M M

1Function   ( , )M x t
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We now introduce a second term and parameter to balance dispersion.

This has the form  , with  for consistency. The 

modified equation is

d d uh t
x t
φβ

⎛ ⎞∂
∼ Δ⎜ ⎟∂ ∂⎝ ⎠

In the steady-state case we added a balancing diffusion, and
introduced a parameter α determined from the truncation error 
analysis.

2 3

2 2 0
2
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β⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠
Now we apply a Petrov-Galerkin method using linear space-time
shape functions and the functions  as weights. Then the weak
form is re-arranged as done before for the steady-state case and we
obtain the
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2
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The difference equation for node i is

The weighting functions become
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3

2

The truncation error is manipulated so that it is written in terms of

coefficients of the derivatives  , , , , ... Here  etc.
The truncation error is
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Notice that  does not appear in the first two terms. Moreover
2choosing  coth   the same as before in the steady state

2
case, the first two terms vanish and the error reduces to

β
γα

γ
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3
Notice that  is only a function of , while  depends on  and .

 as a function of  is shown below for several values of .

c
c

c

αβ φ β
γ

α γ β γ α
β α
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The resulting algorithm is third order in space and second order
in time. We will show through examples that it has excellent
amplitude and phase conservation properties. 22

REMARKS:

1) If  β = 0 the algorithm reduces
to the Petrov- Galerkin 
scheme for the steady-state
equation, and is only second
order accurate in space.

2) We can choose the Courant
number so that the next termnumber so that the next term
in the error vanishes and get
a 4th order algorithm in space.
However this is not practical.

3) The algorithm reduces to the
Petrov-Galerkin developed before as the solution approaches
steady-state. So it is a fully consistent extension. 23

4) As 0,  becomes undefined because   Physically 

we must have 0,  then the difference equati

.
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→
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omes independent of  and the algorithm reduces to the Crank-
Nicolson-Galerkin method.

β

5) If   then 1  and  / 3. This is the purely convective
case. The difference equation becomes

cγ α β→∞ → →

24
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and the truncation error is

3
2 1h 2 1( 1)( )

36
n
i txxx

hTE c HOTφ += − +

This algorithm is 3d order accurate. If c = 1 the leading term 
vanishes and the method is super convergent. If β = 0 we go
back to a second order scheme.

6) Many more Petrov-Galerkin and other methods have been 
proposed for the transient case. A BEST scheme DOES NOT
EXIST. 25

7) Various combinations of space-time weights, lumped and 
consistent mass matrix and inconsistent weighting have been 
studied. The main conclusions are:

i) Consistent mass and weighting produces the best accuracy.
Mass lumping does improve accuracy when bilinear weights
are used in the purely convective case. But for the quadratic in
time weighting functions consistent mass is always superior.

ii) The Petrov-Galerkin weights are not unique. Any function of 
ti th t i t i b t t Δt/2 d th t i t t ttime that is symmetric about t = Δt/2 and that is not constant 
can be used to produce similar difference equations.

STABILITY ANALYSIS
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( )

2 2
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The amplification factor of equation (PG) is
2 2 21 2cos ( / 2 sin ( / 2) sin
9 3 3
2 2 21 2cos ( / 2 sin ( / 2) sin
9 3 3

c ci

c ci

αθ α β θ θ
γ
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⎡ ⎤⎛ ⎞ ⎡ − ⎤⎛ ⎞+ + − + + ⎜ ⎟⎢ ⎥⎜ ⎟ ⎢ ⎥⎝ ⎠⎣ ⎦⎝ ⎠⎣ ⎦
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1) If 0 the algorithm is unconditionally stable for all .β α=

2) If 0 the method is conditionally stable, 1 only if 1,

that is if . The case 20, 0.8 is shown below.

c
ht c
u

β ξ

γ

≠ ≤ ≤

Δ ≤ = =

We see some damping for small
values of L/h. However for L/h=6
It is only ~3% and ~1% for L/h=10

There is some phase error
when =0, but practically
no error when 0 and 
L/h 5.

β
β ≠

≥ 27

Examples

2800( 0.25)

1) Lets eturn to the advection equation  0.25 0  in 0<x<2
t

with initial condition  ( ,0)  and 0.9. The results
obtained with 0 and 0, and with both 0 and 0 are
shown belo

x
x

x ce

φ φ

φ
α β α β

− −

∂ ∂
+ =

∂ ∂
= =

≠ = ≠ ≠
w. The figures show the initial

condition and the numerical
approximation after the wave 
has traveled 2 and 4 wave 
lengths. There must be some
damping because c=0.9. If c=1
there is no damping. The max
error is shown below.
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2

2

2) Now return to the equation with diffusion 

0.25 0.0003125 0.0 using Petrov-Galerkin.
t x x
φ φ φ∂ ∂ ∂
+ − =

∂ ∂ ∂
The solution for 20 and 0.8 is shown below. cγ = =

The superior accuracy of the Petrov-
Galerkin method is evident.Also observe 
that for α = β = 0 this solution is much 
more accurate than with bilinear time-
space elements. The maximum error is
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[ ] ( )
2

22

2

2 ( 1) /

3) We now apply the method to an example with 0.3, and a 
variable diffusion and source term given by

( )
21 2 ( 1) ( 1)( , ) 2

x

x x u t a

u

D x a

x x u t x u t
a

e

S x t a e
⎡ ⎤⎣ ⎦− − +

=

=
⎧ ⎫⎡ ⎤+ − + − − +⎨ ⎬⎣ ⎦⎩ ⎭

=
2( 1) /The analytical solution is  ( , ) . For 0.00359

the solution with 0.8 is shown.  varies between 10 580.
x u t ax t a

c
eφ
γ γ

⎡ ⎤⎣ ⎦− − += =
= < <
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2

2

3
The order of convergence predicted for equation (PG) by the
truncation eror analysis when 0 and 0 is ( ).
To show this, we solve example 2 again, t  

0.25 0.0003125 0.0 

hat

wi

 is

th 5 d
t

O h

x x
φ

α β

φ φ∂ ∂ ∂
+ − =

∂ ∂

≠

∂

≠

ifferent meshes
but keeping 0.9 constant. The maximum relative errors
are shown in the table bel
A log-log plot of the relative error vs. the mesh size is 

ow at time
shown

i

 2

t

.07

h fi

.
c

t
=

=

in the figure.
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