TIME DEPENDENT CONVECTION-DIFFUSION

We now consider the equation $\frac{\partial \phi}{\partial \mathrm{t}}+u \frac{\partial u}{\partial x}-\frac{\partial}{\partial x}\left(D \frac{\partial \phi}{\partial x}\right)=S$, with initial condition $\phi(x, 0)=f(x)$ and appropriate boundary conditions
Two new numerical difficulties arise that were not present before.
These are NUMERICAL DAMPING and NUMERICAL PHASE LAG and we will illustrate them through the following example:
Let us solve the advection equation $\frac{\partial \phi}{\partial t}+0.25 \frac{\partial u}{\partial x}=0$ in $0<x<2$
with initial condition $\phi(x, 0)=e^{-800(x-0.25)^{2}}$
and boundary conditions $\phi(0, \mathrm{t})=\phi(2, \mathrm{t})=0$.
We will apply the Crank-Nicolson-Galerkin ($\theta=1 / 2$) method
with 80 Linear elements, that is $\Delta x=0.025$, and time step $\Delta t=0.09$.
The initial condition and the solution at $t=2.07$ and $t=4.05$ are shown in the figure.

Space time elements
Let us now solve $\frac{\partial \phi}{\partial \mathrm{t}}+0.25 \frac{\partial u}{\partial x}-0.0003125 \frac{\partial^{2} \phi}{\partial x^{2}}=0.0$ using the Galerkin method and Linear 2-dimensional space-time elements.

$$
\begin{aligned}
& N_{1}(x, t)=\left(1-\frac{x}{h}\right)\left(1-\frac{t}{\Delta t}\right) \\
& N_{1}(x, t)=\frac{x}{h}\left(1-\frac{t}{\Delta t}\right) \\
& N_{1}(x, t)=\frac{x}{h} \frac{t}{\Delta t} \\
& N_{1}(x, t)=\left(1-\frac{x}{h}\right) \frac{t}{\Delta t}
\end{aligned}
$$

The initial condition is chosen so that the exact solution is

$$
\phi(x, t)=\frac{1}{\sqrt{1+t}} e^{-\frac{[x-0.25(t+1)]^{2}}{[4 D(t+1)]}}
$$

The mesh size is $h=0.025$ and the time step $\Delta t=0.08$. (this gives $\gamma \neq 20$)

$$
\phi=\sum_{n=-\infty}^{\infty} \Phi_{n}=\sum_{n=-\infty}^{\infty} c_{n} e^{i \alpha_{n}(x-a t)}
$$

The coefficients c_{n} and the wave numbers α_{n} depend on he initial condition. Define the Analytical Amplification Factor (AAF) as the ratio of the amplitude of the n-th Fourier component at time $t+\Delta t$ to the amplitude at time $t . A A F=\left|\frac{\Phi_{n}(x, t+\Delta t)}{\Phi_{n}(x, t)}\right|$. The amplitude increses, decreases or remains the same depending on whether $A A F$ is geater than, less than or equal to 1 .
We can consider one component $\Phi_{n}=c_{n} e^{i \alpha_{n}[x-a(t+\Delta t)]}$, then the $A A F$ reduces to $A A F=\left|\frac{\Phi_{n}(x, t+\Delta t)}{\Phi_{n}(x, t)}\right|=\left|e^{i \alpha_{n} \Delta t}\right|=1$
In the absence of numerical error, the solution must not change the amplitude of the Fourier components in time.

The solution is a pure translation of the initial spike. The analytical expression is

$$
\phi(x, t)=e^{-800[x-0.25(t+1)]^{2}}
$$

The results are very discouraging:

1) The original amplitude has decreased by about 40% (Damping)
2) The spike that should be at $x=0.768$ at $t=2.07$ and at $x=1.26$ at $t=4.05$ is only at $x=0.73$ and $x=1.22$ respectively (out of phase)
3) There is an enormous amount of numerical "DISPERSION" or "NOISE" in the solution.

The exact and numerical solution are shown at times $t=0.0, t=2.0$ and $t=4.0$.

The amplitude of the solution at $t=2.0$ is only 60% of the exact value. At $t=4.0$ it is 55%.
Some phase lag can also be observed.
The space-time finite element scheme used here is equivalent to the θ-method with $\theta=2 / 3$.

NUMERICAL DAMPING

Go back to the purely convective equation $\frac{\partial \phi}{\partial t}+u \frac{\partial \phi}{\partial x}=0$ on $0<x<2 L$ and write the solution in complex Fourier series form.

To understand the behavior of the numerical solution, we write it as a discrete Fourier series $\phi\left(x_{j}, t_{n}\right)=\sum_{k=-K}^{K} a_{k}(t) \xi^{n} e^{i\left[k_{k}(j \Delta x)\right]}$.
The coefficients a_{k} depend on the initial condition; ξ is a constant; K is the number of elements contained in $0<x<L$ (one half of the domain); $i=\sqrt{-1}$ and $k_{k}=\frac{2 \pi k}{2 L}$ is a wave number.
The corresponding frequencies are $f_{k}=\frac{k_{k}}{2 \pi}$ and measure the number of wavelengths contained in each $2 L$ interval. The lowest, $\mathrm{k}=0$, corresponds to a time independent term. The highest , $j=K$ has wave number $\frac{2 \pi K}{2 L}=\pi\left(\frac{K}{L}\right)=\frac{\pi}{\Delta x}$ and gives the number of points that will represent represent a sine wave between 0 and 2π.
The finite series above is the exact solution generated by the numerical method when the a_{k} are the Fourier coefficients of the initial condition.

The Numerical Amplification Factor is defined as

$$
N A F=\left|\frac{\phi_{j}^{n+1}}{\phi_{j}^{n}}\right|=|\xi|
$$

The DAMPING is the numerical error γ_{d} in the amplification factor for a component j. $\quad \gamma_{d}=\frac{N A F}{A A F}=\frac{|\xi|}{1}=|\xi|$.
To propagate a solution without amplification error we need $|\xi|=1$.

EXAMPLE

Discretize the convective equation $\frac{\partial \phi}{\partial t}+u \frac{\partial \phi}{\partial x}=0$ using the Crank-Nicolson-Galerkin method with linear elements. We obtain

$$
\left(\frac{h}{6 \Delta t}\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right]+\frac{u}{4}\left[\begin{array}{ll}
-1 & 1 \\
-1 & 1
\end{array}\right]\right)\left[\begin{array}{l}
\phi_{1}^{n+1} \\
\phi_{2}^{n+1}
\end{array}\right]=\left(\frac{h}{6 \Delta t}\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right]-\frac{u}{4}\left[\begin{array}{ll}
-1 & 1 \\
-1 & 1
\end{array}\right]\right)\left[\begin{array}{l}
\phi_{1}^{n} \\
\phi_{2}^{n}
\end{array}\right]
$$

$$
\begin{aligned}
& \quad(\xi-1)\left(1+4(\cos \theta+i \sin \theta)+\cos ^{2} \theta+2 i \cos \theta \sin \theta-\sin ^{2} \theta\right)+ \\
& \qquad \frac{3 u \Delta t}{2 h}(\xi+1)\left((\cos \theta+i \sin \theta)^{2}-1\right)=0 \\
& \text { Further manipulations yield } \\
& \xi(\cos \theta(4+2 \cos \theta)+i \sin \theta(4+2 \cos \theta))-(\cos \theta(4+2 \cos \theta)+i \sin \theta(4+2 \cos \theta)) \\
& +i \frac{3 u \Delta t}{h} \xi \sin \theta(\cos \theta+i \sin \theta)+i \frac{3 u \Delta t}{h} \sin \theta(\cos \theta+i \sin \theta)=0 \\
& \text { And finally } \\
& \qquad \xi=\frac{(4+2 \cos \theta)-i \frac{3 u \Delta t}{h} \sin \theta}{(4+2 \cos \theta)+i \frac{3 u \Delta t}{h} \sin \theta}
\end{aligned}
$$

REMARKS:

1) Noting that k is a wave number, $k=2 \pi / L$ if L is the wave length, then $\theta=k h=k \Delta x=2 \pi\left(\frac{\Delta x}{L}\right)$. This is convenient for us to plot the magnitude of ξ versus the number of elements per wave length ir a covenient way.

What actually happens is a combination of the two. This introduces dispersion and numerical damping. Moreover, because there is no damping in the algorithm $(|\zeta|=1)$ there is no mechanism to kill the oscillations so they just stay there and as the amplitude continues to decay they eventually destroy the solution.

EXAMPLE

Apply the Petrov- Galerkin method to the purely convective equation $\frac{\partial \phi}{\partial t}+u \frac{\partial \phi}{\partial x}=0$, use the θ-method with $\theta=1$. The difference equation is

$$
\phi_{j}^{n+1}+c\left(\phi_{j}^{n+1}-\phi_{j-1}^{n+1}\right)=\phi_{j}^{n}
$$

and replacing $\phi_{j}^{n}=\xi^{n} e^{i k j h}$ as before we obtain

$$
\xi=\frac{1}{1+c(1-\cos \theta+i \sin \theta)}
$$

from here we get

$$
|\xi|=\left[(1+c)^{2}+c^{2}-2 c(1+c) \cos \theta\right]^{-1 / 2}
$$

Assembling two elements the difference equation for node j is

$$
\begin{gathered}
\frac{2}{3}\left[\left(\phi_{j-1}^{n+1}+4 \phi_{j}^{n+1}+\phi_{j+1}^{n+1}\right)-\left(\phi_{j-1}^{n}+4 \phi_{j}^{n}+\phi_{j+1}^{n}\right)\right]+ \\
\frac{u \Delta t}{h}\left[\left(\phi_{j+1}^{n+1}-\phi_{j-1}^{n+1}\right)+\left(\phi_{j+1}^{n}-\phi_{j-1}^{n}\right)\right]=0
\end{gathered}
$$

Replace $\phi_{\mathrm{j}}^{\mathrm{n}}=\xi^{n} e^{i(k \cdot j h)}$
$\frac{2}{3}\left[\xi^{n+1}\left(e^{i k(j-1) h}+4 e^{i k j h}+e^{i k(j+1) h}\right)-\xi^{n}\left(e^{i k(j-1) h}+4 e^{i k j h}+e^{i k(j+1) h}\right)\right]$

$$
+\frac{u \Delta t}{h}\left[\xi^{n+1}\left(e^{i k(j+1) h}-e^{i k(j-1) h}\right)+\xi^{n}\left(e^{i k(j+1) h}-e^{i k(j-1) h}\right)\right]=0
$$

Multiply by $\xi^{-n}, \frac{3}{2}$, and $e^{-i k(j-1) h}$
$(\xi-1)\left(1+4 e^{i k h}+e^{i 2 k h}\right)+\frac{3 u \Delta t}{2 h}(\xi+1)\left(e^{i 2 k h}-1\right)=0$
Because $k h$ can attain any value we set $\theta=k h$. Using Euler's equation we have $e^{i \theta}=\cos \theta+i \sin \theta$ and $e^{2 i \theta}=(\cos \theta+i \sin \theta)^{2} \quad 8$
2) The expression for ξ is of the form $\frac{Z}{\bar{Z}}$ therefore $|\xi| \equiv 1$ and the Crank-Nicolson-Galerkin method HAS NO DAMPING. This is good because the algorithm preserves the amplitude of the Fourie components, but it is bad because the method has no mechanism to eliminate perturbations. Moreover
3) We define the Courant number c as $c=\frac{u \Delta t}{h}$.

If the mesh and time step are chosen so that $c=1$, a particle of fluid will travel exactly the distance h in one time step. The peak translates from one node to the next and the solution is excellent.
However, our introductory example has $c=0.9$, and the results were disastrous. Therefore, the mesh could not capture the peak except every 10 time steps. The algorithm does one of two things:
i) Assume that the peak is attained at the node closest to it, thus changing the speed of propagation and introducing phase lag. ii) Give the correct value at the closest node, and to conserve mass, redistribut the excess mass throughout the domain. Due to lack of memory (the method only knows what happens at $t=t_{n}$, but once the amplitude decreases it cannot increase back up. Thus producing damping and noise.
10
REMARKS:

R) The algorithm has too much
damping. For $c=1,\|\xi\|=0.577$ if
six elements per wavelength are
used, and $\|\xi\|=0.862$ using 15
elements per wave length. 15
elements is very fine resolution
and still reduces the amplitude by
14% in one time step.

2) A reasonably accurate scheme
should resolve a wave with about
6 elements reasonably well to be

affordable.
3) The damping is reduced as the Courant number decreases. However, a lower Courant number requires a smaller time step. Note that for $\mathrm{c}=2.0$ the damping is very strong. In general we should not calculate with a Courant number greater than 1 if we need to capture the time response accurately. But if only the steady-state is of interest the damping $\quad 12$ provides additional stability.
4) In this example $\theta=1$, so the method is unconditionally stable. Because the NAF $|\xi|$ is less than 1 , perturbations in the solution will decrease and eventually disappear in time. But if $|\xi|>1$ perturbations will grow and and the algorithm become unstable. The stability is governed by

$$
|\xi|\left\{\begin{array}{cc}
<1 & \text { stable } \\
=1 & \text { neutrally stable } \\
>1 & \text { unstable }
\end{array}\right.
$$

This criterion for stability is only useful for linear equations, but it can be extended to systems of linear equations as well.

EXAMPLE

Let us now use $\theta=0$ to discretize the convective equation. The difference equation is $\phi_{j}^{n+1}=c\left(\phi_{j-1}^{n}-\phi_{j}^{n}\right)+\phi_{j}^{n}$ fully explicit.

$$
|\xi| \text { is found to be } \quad|\xi|=\left(1-4 c(1-c) \sin ^{2}(\theta / 2)\right)^{\frac{1}{2}}
$$

$$
\text { and the stability condition }|\xi| \leq 1 \text { becomes }
$$

$$
-1 \leq 1-4 c(1-c) \sin ^{2}(\theta / 2) \leq 1
$$

Manipulating this expression algebraically we find that the first inequality is always satisfied.
The second inequality turns out to be satisfied only if $\mathrm{c} \leq 1$. So the method is stable when $\quad \Delta t \leq \frac{h}{u}$
von Neumann's method can be extended to two dimensions by expressing the Fourier components of the numerical solution in the form $\phi\left(x_{j}, y_{\ell}, t_{n}\right) \equiv \phi_{j \ell}^{n}=\xi^{n} e^{i k(j \Delta x)} e^{i m((\Delta \Delta y)}$. The damping characteristic and time step limitations if any can be obtained.

NUMERICAL PHASE ERROR

The phase error is related to the translational velocity of each of the Fourier components of the numerical solution.
Remarks:
(1) For $c=0.25$ and 0.5 the phase
error can be large. However for
c $=0.5$ or 1.0 there is no phase
error.

In the steady-state case we added a balancing diffusion, and introduced a parameter a determined from the truncation error analysis.
We now introduce a second term and parameter to balance dispersion. This has the form $\beta d\left(\frac{\partial^{3} \phi}{\partial x^{2} \partial t}\right)$, with $d \sim u h \Delta t$ for consistency. The modified equation is

$$
\frac{\partial \phi}{\partial t}+u \frac{\partial \phi}{\partial x}-\left(D+\frac{\alpha u h}{2}\right) \frac{\partial^{2} \phi}{\partial x^{2}}+\beta d \frac{\partial^{3} \phi}{\partial x^{2} \partial t}=0
$$

Now we apply a Petrov-Galerkin method using linear space-time shape functions and the functions M_{i} as weights. Then the weak form is re-arranged as done before for the steady-state case and we obtain the final Petrov-Galerkin weights
$w_{i}(x, t)=M_{i}(x, t)+\frac{\alpha h}{2} \frac{\partial M_{i}}{\partial x}+\frac{\beta h \Delta t}{4} \frac{\partial^{2} M_{i}}{\partial x \partial t}$

The truncation error is manipulated so that it is written in terms of
coefficients of the derivatives $\phi_{x x}, \phi_{t x}, \phi_{t x x}, \phi_{t x x}, \ldots$ Here $\phi_{t x x}=\frac{\partial^{3} \phi}{\partial t \partial x^{2}}$ etc The truncation error is

$$
\begin{aligned}
& T E=\left(\frac{2 D}{3 \gamma}\right)(\sinh \gamma)\left[1-\left(\alpha+\frac{2}{\gamma}\right) \tanh \left(\frac{\gamma}{2}\right)\right]\left(\phi_{i}^{n+1}\right)_{x x} \\
& +\left(\frac{2 h}{3 \gamma^{2}}\right)\left[\sinh \gamma-\left(\alpha+\frac{2}{\gamma}\right)(\cosh \gamma-1)\right]\left(\phi_{i}^{n+1}\right)_{t x} \\
& +\left(\frac{h^{2}}{3}\right)\left[\frac{\alpha}{\gamma}+\frac{\beta c}{2}+\frac{2}{\gamma^{3}} \sinh \gamma\left(1-\tanh \left(\frac{\gamma}{2}\right)\right)-\frac{4}{\gamma^{4}}(\cosh \gamma-1)\right]\left(\phi_{i}^{n+1}\right)_{t x x} \\
& +\left(\frac{h^{3}}{3}\right)\left[\frac{c^{2}}{3}\left(\frac{1}{\gamma}-\frac{c-\alpha}{4}\right)-\frac{\alpha}{2}\left(\frac{1}{6}-\frac{c}{\gamma}-\frac{2}{\gamma^{2}}\right)-\frac{1}{6 \gamma}+\frac{\beta c^{2}}{4}\right. \\
& \left.+\frac{2}{\gamma^{4}} \sinh \gamma\left(1-\tanh \left(\frac{\gamma}{2}\right)\right)-\frac{4}{\gamma^{5}}(\cosh \gamma-1)\right]\left(\phi_{i}^{n+1}\right)_{t x x x}+\text { HOT }
\end{aligned}
$$

REMARKS:

1) If $\beta=0$ the algorithm reduces
to the Petrov- Galerkin
scheme for the steady-state
equation, and is only second
order accurate in space.
2) We can choose the Courant
number so that the next term
in the error vanishes and get
a 4th order algorithm in space.
However this is not practical.
3) The algorithm reduces to the
Petrov-Galerkin developed before as the solution approaches
steady-state. So it is a fully consistent extension.
The weighting functions become
$w_{1}(x, t)=4\left(1-\frac{x}{h}\right) \frac{t}{\Delta t}\left(1-\frac{t}{\Delta t}\right)-2 \alpha \frac{t}{\Delta t}\left(1-\frac{t}{\Delta t}\right)-\beta\left(1-\frac{2 t}{\Delta t}\right)$
$w_{2}(x, t)=4 \frac{x}{h} \frac{t}{\Delta t}\left(1-\frac{t}{\Delta t}\right)+2 \alpha \frac{t}{\Delta t}\left(1-\frac{t}{\Delta t}\right)+\beta\left(1-\frac{2 t}{\Delta t}\right)$
$\int_{a}^{b} w\left(\frac{\partial \phi}{\partial t}+u \frac{\partial \phi}{\partial x}-D \frac{\partial^{2} \phi}{\partial x^{2}}\right) d x=0$
The difference equation for node i is
$\frac{1}{9 \Delta t}\left[\left(\phi_{i-1}^{n+1}-\phi_{i-1}^{n}\right)+4\left(\phi_{i}^{n+1}-\phi_{i}^{n}\right)+\left(\phi_{i+1}^{n+1}-\phi_{i+1}^{n}\right)\right]$
$-\frac{\alpha}{6 \Delta t}\left[\left(\phi_{i+1}^{n+1}-\phi_{i+1}^{n}\right)-\left(\phi_{i-1}^{n+1}-\phi_{i-1}^{n}\right)\right]+\frac{u}{6 h}\left[\left(\phi_{i+1}^{n+1}+\phi_{i+1}^{n}\right)-\left(\phi_{i-1}^{n+1}+\phi_{i-1}^{n}\right)\right]$
$-\left[\frac{u}{6 h}(\alpha-\beta)+\frac{D}{3 h^{2}}\right]\left(\phi_{i+1}^{n+1}-2 \phi_{i}^{n+1}+\phi_{i-1}^{n+1}\right)$
$-\left[\frac{u}{6 h}(\alpha+\beta)+\frac{D}{3 h^{2}}\right]\left(\phi_{i+1}^{n}-2 \phi_{i}^{n}+\phi_{i-1}^{n}\right)=0$

Notice that β does not appear in the first two terms. Moreover choosing $\alpha=\operatorname{coth}\left(\frac{\gamma}{2}\right)-\frac{2}{\gamma}$ the same as before in the steady state case, the first two terms vanish and the error reduces to
$T E=\left(\frac{h^{2}}{3}\right)\left[\frac{\alpha}{\gamma}+\frac{\beta c}{2}-\frac{c^{2}}{6}\right]\left(\phi_{i}^{n+1}\right)_{t \times x}$
$+\left(\frac{h^{3}}{3}\right)\left[\frac{c^{2}}{3 \gamma}-\frac{c^{3}}{12}-\frac{1}{6 \gamma}-\frac{\alpha}{12}+\frac{\alpha c}{2 \gamma}+\frac{\alpha c^{3}}{12}+\frac{\alpha}{\gamma^{2}}+\frac{\beta c^{2}}{4}\right]\left(\phi_{i}^{n+1}\right)_{t x x x}+$ HOT Choosing β to eliminate ϕ_{txx} we have $\beta=\frac{c}{3}-\frac{2 \alpha}{\gamma c}$.
Notice that α is only a function of γ, while β depends on γ and α. β as a function of α is shown below for several values of c.

The resulting algorithm is third order in space and second order in time. We will show through examples that it has excellent amplitude and phase conservation properties.
4) As $\gamma \rightarrow 0, \beta$ becomes undefined because $\beta=\frac{c}{3}-\frac{2 \alpha}{\gamma c}$. Physically we must have $u \rightarrow 0$, then the difference equation

$$
\begin{aligned}
& \frac{1}{9 \Delta t}\left[\left(\phi_{i-1}^{n+1}-\phi_{i-1}^{n}\right)+4\left(\phi_{i}^{n+1}-\phi_{i}^{n}\right)+\left(\phi_{i+1}^{n+1}-\phi_{i+1}^{n}\right)\right] \\
& -\frac{\alpha}{6 \Delta t}\left[\left(\phi_{i+1}^{n+1}-\phi_{i+1}^{n}\right)-\left(\phi_{i-1}^{n+1}-\phi_{i-1}^{n}\right)\right]+\frac{u}{6 h}\left[\left(\phi_{i+1}^{n+1}+\phi_{i+1}^{n}\right)-\left(\phi_{i-1}^{n+1}+\phi_{i-1}^{n}\right)-\right. \\
& -\left[\frac{u}{6 h}(\alpha-\beta)+\frac{D}{3 h^{2}}\right]\left(\phi_{i+1}^{n+1}-2 \phi_{i}^{n+1}+\phi_{i-1}^{n+1}\right) \\
& -\left[\frac{u}{6 h}(\alpha+\beta)+\frac{D}{3 h^{2}}\right]\left(\phi_{i+1}^{n}-2 \phi_{i}^{n}+\phi_{i-1}^{n}\right)=0
\end{aligned}
$$

becomes independent of β and the algorithm reduces to the Crank-Nicolson-Galerkin method.
5) If $\gamma \rightarrow \infty$ then $\alpha \rightarrow 1$ and $\beta \rightarrow c / 3$. This is the purely convective case. The difference equation becomes

24

$$
\begin{aligned}
\frac{1}{18 \Delta t} & {\left[5\left(\phi_{i-1}^{n+1}-\phi_{i-1}^{n}\right)+8\left(\phi_{i}^{n+1}-\phi_{i}^{n}\right)-\left(\phi_{i+1}^{n+1}-\phi_{i+1}^{n}\right)\right] } \\
& +\frac{u}{3 h}\left[\phi_{i}^{n+1}-\phi_{i-1}^{n+1}+\frac{\Delta t}{6 h}\left(\phi_{i+1}^{n+1}-2 \phi_{i}^{n+1}+\phi_{i-1}^{n+1}\right)\right. \\
& \left.+\phi_{i}^{n}-\phi_{i-1}^{n}-\frac{\Delta t}{6 h}\left(\phi_{i+1}^{n}-2 \phi_{i}^{n}+\phi_{i-1}^{n}\right)\right]=0
\end{aligned}
$$

and the truncation error is

$$
T E=\frac{h^{3}}{36}\left(c^{2}-1\right)\left(\phi_{i}^{n+1}\right)_{t x x x}+H O T
$$

This algorithm is 3 d order accurate. If $\mathrm{c}=1$ the leading term vanishes and the method is super convergent. If $\beta=0$ we go back to a second order scheme.
6) Many more Petrov-Galerkin and other methods have been proposed for the transient case. A BEST scheme DOES NOT EXIST. 25
7) Various combinations of space-time weights, lumped and consistent mass matrix and inconsistent weighting have been studied. The main conclusions are:
i) Consistent mass and weighting produces the best accuracy. Mass lumping does improve accuracy when bilinear weights are used in the purely convective case. But for the quadratic i time weighting functions consistent mass is always superior.
ii) The Petrov-Galerkin weights are not unique. Any function of time that is symmetric about $t=\Delta t / 2$ and that is not constant can be used to produce similar difference equations.

STABILITY ANALYSIS
The amplification factor of equation (PG) is
$\xi=\frac{\left[\frac{2}{9}\left(1-2 \cos ^{2}(\theta / 2)-\frac{2 c}{3}\left(\alpha+\beta+\frac{2}{\gamma}\right) \sin ^{2}(\theta / 2)\right]-i\left[\left(\frac{c+\alpha}{3}\right) \sin \theta\right]\right.}{\left[\frac{2}{9}\left(1+2 \cos ^{2}(\theta / 2)+\frac{2 c}{3}\left(\alpha-\beta+\frac{2}{\gamma}\right) \sin ^{2}(\theta / 2)\right]+i\left[\left(\frac{c-\alpha}{3}\right) \sin \theta\right]\right.}$

3) We now apply the method to an example with $u=0.3$, and a variable diffusion and source term given by
$D(x)=a^{2} e^{x^{2}}$
$S(x, t)=2 a\left\{1+2 x[x-u(t+1)]-\frac{2}{a}\left[x-u(t+1)^{2}\right]\right\} e^{\left(x^{2}-[x-u(t+1)]^{2} / a\right)}$
The analytical solution is $\phi(x, t)=e^{-[x-u(t+1)]^{2} / a}$. For $a=0.00359$
the solution with $c=0.8$ is shown. γ varies between $10<\gamma<580$.

The order of convergence predicted for equation (PG) by the truncation eror analysis when $\alpha \neq 0$ and $\beta \neq 0$ is $O\left(h^{3}\right)$.
To show this, we solve example 2 again, that is
$\frac{\partial \phi}{\partial \mathrm{t}}+0.25 \frac{\partial \phi}{\partial x}-0.0003125 \frac{\partial^{2} \phi}{\partial x^{2}}=0.0$ with 5 different meshes but keeping $c=0.9$ constant. The maximum relative errors are shown in the table below at time $t=2.07$.
A log-log plot of the relative error vs. the mesh size is shown in the figure.

