MULTI-DIMENSIONAL TIME DEPENDENT CONVECTION-DIFFUSION

Extension of the Petrov-Galerkin method to the equation

$$
\frac{\partial \phi}{\partial t}+\mathbf{V} \cdot \nabla \phi=\nabla \mathbf{D} \nabla \phi+S
$$

in two and three dimensionsis obtained as before by adding an anisotropic diffusion and dispersion only in the direction of flow

The weighting functions can be expressed in the form

$$
w_{i}(\mathbf{x}, t)=M_{i}+\frac{h}{2\|\mathbf{V}\|}\left(\alpha+\frac{\beta \Delta t}{2} \frac{\partial}{\partial t}\right) \mathbf{V} \cdot \nabla M_{i}
$$

where the functions M_{i} are quadratic in time and linear in space.
In two space dimensions the elements are tri-linear. The figure below shows a tri-linear space-time element together with the nodal numbering and coordinate system. Also the shape functions are given.

The parameters α and β are obtained from

$$
\begin{aligned}
& \alpha=\operatorname{coth}\left(\frac{\bar{\gamma}}{2}\right)-\frac{2}{\bar{\gamma}}, \quad \bar{\gamma}=\frac{\|\mathbf{V}\| \bar{h}}{D} \\
& \beta=\frac{\delta}{3}-\frac{2 \alpha}{\bar{\gamma} \delta}, \quad \delta=\frac{\|\mathbf{V}\| \Delta t}{\bar{h}}
\end{aligned}
$$

with \bar{h} defined as in the steady-state case.
When $\beta \neq 0$ the stability limit in two dimensions takes the form

$$
\Delta t \leq \frac{1}{(|u| / \Delta x)+(|\mathrm{v}| / \Delta y)}
$$

In 2 and 3 dimensions the stability limit is only approximate, and it can be expressed in several different ways.
The Courant number is also approximate and given by

$$
c=\left(\frac{|u|}{\Delta x}+\frac{|v|}{\Delta y}\right)^{2} \Delta t
$$

The functions M_{i} are

EXAMPLES

1) First consider unidirectional flow, $u=0.25$ and $v=0$. The

The initial perturbation is

$$
\phi(x, y, 0)=\exp \left\{-\left[(x-0.25)^{2}+(y-0.25)^{2}\right] / 0.00125\right\}
$$

$D=0.0003125, S=0$. The domain $0 \leq x \leq 1.0$ and $0 \leq y \leq 0.5$ is discretized with a uniform mesh $\Delta x=\Delta y=0.025$, and Δt is chosen so that $c=0.85$ and $\gamma=20$. Results are shown at $t=2.04$.

$$
\phi_{t t}=u^{2} \phi_{x x} \text { and } \phi_{t t t}=u^{2} \phi_{t x x}
$$

replacing in the Taylor expansion we have

$$
\frac{\phi^{n+1}-\phi^{n}}{\Delta t}-u^{2} \frac{\Delta t^{2}}{6} \phi_{t x}^{n}+u \phi_{x}-u^{2} \frac{\Delta t}{2} \phi_{x x}^{n}=0
$$

This can be discretized to obtain a number of different algorithms For example, replacing the time derivative by a forward difference leads to the Euler-Taylor-Galerkin form

$$
\frac{\phi^{n+1}-\phi^{n}}{\Delta t}-u^{2} \frac{\Delta t}{6}\left[\phi_{x x}^{n+1}-\phi_{x x}^{n}\right]+u \phi_{x}-u^{2} \frac{\Delta t}{2} \phi_{x x}^{n}=0
$$

NOTES:

i) In effect, a stabilizing diffusion has been added to the scheme.
ii) The scheme is accurate, simple and easy to implement.
iii) The solution will not approach the correct limit as it reaches steady-state.
iv) The extension to include diffusion is difficult and not as accurate
2) The stiffness matrices of convection problems are nonsymmetric which greatly increases the cost of the solutions. This can be avoided in practice by treating the convective terms explicitly. However in these methods if $\beta \neq 0$ it leads to unconditionally unstable schemes. However if $\alpha \neq 0$ and $\beta=0$ we can still compute with $c<1$. This argues for the use of $\alpha \neq 0$ and $\beta=0$ in practical situations when the added accuracy is not needed.
3) A method that has been heavily used in the purely convective case is the Taylor-Galerkin method (Do-1984). In one dimension the idea is to aproximate $(\partial \phi / \partial \mathrm{t})$ by a truncated Taylor series in time

$$
\phi_{t}^{n}=\frac{\phi^{n+1}-\phi^{n}}{\Delta t}-\frac{\Delta t}{2} \phi_{t t}^{n}-\frac{\Delta t^{2}}{6} \phi_{t t}^{n}+O\left(\Delta t^{3}\right)
$$

where $\phi_{t}^{n}=\frac{\partial \phi}{\partial t}\left(x, t_{n}\right)$.
From the differential equation we have $\phi_{t}=-u \phi_{x x}$ which can be differentiated to get
4) The Petrov-Galerkin method has the unit Courant-Friedrich-Levy property. That is, if $c=1$ the perturbations travel undistorted. The convection of a Gauss form in the x-direction with $\alpha \neq 0, \beta \neq 0$ and $c=1$ is shown below at $t=0$ and $t=2$. It shows no error.

5) Many other methods have been proposed, amongst them: The Method of Moments (P-B), Variational approaches (Id), Euler-Lagrange (Var-Finn), Hermite cubics (Allen), etc.
6. The method has been extended to the non-linear Burgers equation. Results show that in the presence of very sharp fronts small oscillations develop just ahead and behind the front.

EXAMPLE

$\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}=0.01 \frac{\partial^{2} u}{\partial x^{2}} \quad 0<x<2, u(0, t)=u(2, t)=0$,
$u(x, 0)=\left\{\begin{array}{cc}\cos [2 \pi(x-0.25)], & 0 \leq x \leq 0.5 \\ 0, & \text { otherwise }\end{array}, \Delta x=\Delta t=0.025\right.$

VISCOUS INCOMPRESSIBLE FLOW

The Navier-Stokes equations (in two-dimensions for simplicity) are normally written either in terms of velocity or in terms of

$$
\text { stresses. } \quad \frac{\partial u}{\partial x}+\frac{\partial \mathrm{v}}{\partial y}=0
$$

$$
\rho\left(\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}\right)=-\frac{\partial p}{\partial x}+\frac{\partial}{\partial x}\left(\mu \frac{\partial u}{\partial x}\right)+\frac{\partial}{\partial y}\left(\mu \frac{\partial u}{\partial y}\right)+\rho B_{x}
$$

$$
\rho\left(\frac{\partial \mathrm{v}}{\partial t}+u \frac{\partial \mathrm{v}}{\partial x}+\mathrm{v} \frac{\partial \mathrm{v}}{\partial y}\right)=-\frac{\partial p}{\partial y}+\frac{\partial}{\partial x}\left(\mu \frac{\partial \mathrm{v}}{\partial x}\right)+\frac{\partial}{\partial y}\left(\mu \frac{\partial \mathrm{v}}{\partial y}\right)+\rho B_{y}
$$

$$
\text { or } \rho \frac{D u_{i}}{D t}=\frac{\partial \sigma_{i j}}{\partial x_{j}}+\rho B_{i}, \quad \sigma_{i j}=-p \delta_{i j}+\mu\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}\right)
$$

$$
\frac{\partial u_{i}}{\partial x_{i}}=0
$$

${ }^{12}$
Example
Flow over a backward facing step
$\Gamma_{1}=\left\{y=0, L_{1} \leq x \leq L_{2}\right\} \cup\left\{x=L_{1}, 0 \leq y \leq H / 2\right\} \cup\left\{y=H / 2,0 \leq x \leq L_{1}\right\}$
$\Gamma_{2}=\left\{x=L_{2}, 0 \leq y \leq H\right\}$
$\Gamma_{3}=\phi$
Remarks:
The Notice that the boundary segments Γ_{1}, Γ_{2}, and Γ_{3} need not be
the same for both velocity components. For example, symmetry
boundary conditions occur often and are applied as a combination
of a Dirichlet condition normal to the symmetry plane and a
Neumann condition along the symmetry plane.

The weak form is stated as follows: Find funcions u^{*} and v^{*} in $H^{1}(\Omega)$ that satisfy the Dirichlet boundary conditions in Γ_{1}, and a funcion p^{*} in $\mathfrak{L}^{2}(\Omega)$ such that

$$
\begin{aligned}
& =\left\{U \rho\left(\frac{\partial u^{*}}{\partial t}+u^{*} \frac{\partial u^{*}}{\partial x}+\mathrm{v} \frac{\partial u^{*}}{\partial y}\right)-\frac{\partial U}{\partial x} p^{*}+\mu\left(\frac{\partial U}{\partial x} \frac{\partial u^{*}}{\partial x}+\frac{\partial U}{\partial y} \frac{\partial u^{*}}{\partial y}\right)-\rho B_{x}\right\} d \Omega \\
& +\int_{\Gamma} U\left[\left(-p^{*}+\mu \frac{\partial u^{*}}{\partial x}\right) n_{x}+\mu \frac{\partial u^{*}}{\partial y} n_{y}\right] d \Gamma=0 \\
& \iint_{2}\left\{V \rho\left(\frac{\partial \mathrm{v}^{*}}{\partial t}+u^{*} \frac{\partial \mathrm{v}^{*}}{\partial x}+\mathrm{v} \frac{\partial \mathrm{v}^{*}}{\partial y}\right)-\frac{\partial V}{\partial y} p^{*}+\mu\left(\frac{\partial V}{\partial x} \frac{\partial \mathrm{v}^{*}}{\partial x}+\frac{\partial V}{\partial y} \frac{\partial \mathrm{v}^{*}}{\partial y}\right)-\rho B_{y}\right\} d \Omega \\
& +\int_{\Gamma} V\left[\mu \frac{\partial \mathrm{v}^{*}}{\partial y} n_{x}+\left(-p^{*}+\mu \frac{\partial \mathrm{v}^{*}}{\partial y}\right) n_{y}+\right] d \Gamma=0 \\
& \text { and } \int_{\Omega} Q\left(\frac{\partial u^{*}}{\partial x}+\frac{\partial v^{*}}{\partial x}\right) d \Omega=0
\end{aligned}
$$

for all pairs of weighting functions U and V in $H_{0}^{1}(\Omega)$ and all functions Q in a space S that will be defined below. ${ }^{15}$

2) Boundary conditions of mixed type are rarely encountered in fluid flow.
3) Boundary conditions at free surfaces will be discussed later. 4) In general no boundary conditions are needed for the pressure. However, a reference value must be provided. This is usually done fixing the pressure at one point in the domain.
5) In some calculations cyclic conditions are imposed along otherwise open boundaries. This can be done in various ways depending on the problem and will be discussed later.

Remarks:

1) The mathematical theory is complex and beyond our scope, we will be satisfied with stating the results. There are several very good text books that the interested reader can consult.
2) This is called a "Mixed Variational Formulation" because the pressure is found in a space different than the velocities.
The pressure is sought in a subset of $\mathfrak{L}^{2}(\Omega)$ that we refer to as " $\mathfrak{L}^{2}(\Omega)$ modulo constants" and is denoted by $S=\mathfrak{L}^{2}(\Omega / \mathcal{R})$. Because the pressure is only determined up to an arbitrary constant, therefore, two functions that differ buy a real constan number are the same function in this space.
3) Mathematically results can only proved for the continuity equation coupled to the linear Stokes equations

$$
\begin{gathered}
\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0 \\
\rho \frac{\partial u}{\partial t}=-\frac{\partial p}{\partial x}+\mu\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right)+\rho B_{x} \\
\rho \frac{\partial v}{\partial t}=-\frac{\partial p}{\partial y}+\mu\left(\frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}\right)+\rho B_{y}
\end{gathered}
$$

subspaces containing the solution be compatible. This require the existence of a constant $\beta>0$ such that

$$
\sup _{\substack{\mathbf{V} \in H^{1}(\Omega) \\ \mathbf{V} \neq 0}} \frac{\left|\int_{\Omega} q\left(\frac{\partial u}{\partial x}+\frac{\partial \mathbf{v}}{\partial y}\right) d \Omega\right|}{\|\mathbf{V}\|_{1}} \leq \beta\|q\|_{0}
$$

for all $q \in S$.
This guarantees that the velocity and pressure spaces are consistent and is known as the "LBB" condition (after Ladyzehenskaya, Babuska and Brezzi)
Clearly the analytical spaces automatically satisfy this condition. However the discretized spaces often violate it, and the elements cannot be used or must be modified to satisfy the condition.

CONSTANT DENSITY FLOWS

Let us assume that $B_{x}=0$ and $B_{y}=0$, and that ρ and μ are constant. Write the momentum equations in non-dimensional form

$$
\begin{aligned}
& \frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}+\mathrm{v} \frac{\partial u}{\partial y}=-\frac{\partial p}{\partial x}+\frac{1}{\operatorname{Re}}\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right) \\
& \frac{\partial \mathrm{v}}{\partial t}+u \frac{\partial \mathrm{v}}{\partial x}+\mathrm{v} \frac{\partial \mathrm{v}}{\partial y}=-\frac{\partial p}{\partial y}+\frac{1}{\operatorname{Re}}\left(\frac{\partial^{2} \mathrm{v}}{\partial x^{2}}+\frac{\partial^{2} \mathrm{v}}{\partial y^{2}}\right)
\end{aligned}
$$

Re is the Reynolds number defined as $\operatorname{Re}=\frac{\bar{U} \rho_{0} L}{\mu}$, where \bar{U}
is a characteristic velocity, ρ_{0} is the reference density, L is the characteristic length and μ is the dynamic viscosity.
The reference pressure is $p_{0}=\rho_{0} \bar{U}^{2}$ and the time scale is $\tau=L / \bar{U}$.

MIXED FORMULATION

The velocity and pressure are approximated using shape functions

$$
\begin{aligned}
& u(x, y, t)=\sum_{j} N_{j}(x, y) u_{j}(t) \\
& \mathrm{v}(x, y, t)=\sum_{j}^{j} N_{j}(x, y) \mathrm{v}_{j}(t) \\
& p(x, y, t)=\sum M_{k}(x, y) p_{k}(t)
\end{aligned}
$$

18

To avoid having to combine the time stepping with a non-linear
iteration, as well as having to invert a stiffness matrix at each time step, the convective terms are treated explicitly evaluating them at The current known time step.
The stiffness matrix K will contain only the linear part of the spatial operator, that is the pressure and viscous terms and the continuity constraint.

$$
\mathbf{K}=\left[\begin{array}{ccc}
\mathbf{B} & \mathbf{0} & \mathbf{C}_{x} \\
\mathbf{0} & \mathbf{B} & \mathbf{C}_{y} \\
-\mathbf{C}_{x}^{\mathrm{T}} & -\mathbf{C}_{y}^{\mathrm{T}} & \mathbf{0}
\end{array}\right]
$$

The matrices $\mathbf{B}, \mathbf{C}_{x}$ and \mathbf{C}_{y} are

$$
\begin{gathered}
\mathbf{B}=\left[b_{i j}\right]=\left[\int_{\Omega} \frac{1}{\operatorname{Re}}\left(\frac{\partial N_{i}}{\partial x} \frac{\partial N_{j}}{\partial x}+\frac{\partial N_{i}}{\partial y} \frac{\partial N_{j}}{\partial y}\right) d \Omega\right] \\
C_{x}=\left[\left(c_{x}\right)_{i k}\right]=\left[-\int_{\Omega} \frac{\partial N_{i}}{\partial x} M_{k} d \Omega\right] \quad \mathbf{C}_{y}=\left[\left(c_{y}\right)_{i k}\right]=\left[-\int_{\Omega} \frac{\partial N_{i}}{\partial y} M_{k} d_{21}\right]
\end{gathered}
$$

The exact solution is $u(x, y)=4 u_{m} y^{2}(1-y),{ }^{4}, ~ v(x, y)=0, \frac{\partial p}{\partial x}=\frac{8 u_{m}}{\operatorname{Re}}$ where u_{m} is the maximum velocity at the center of the channel
The Figure shows the finite element solution obtained for $\mathrm{Re}=100$ using bilinear elements for velocity, piecewise constant pressure and a uniform mesh of size $\Delta x=0.1, \Delta y=0.05$.

The initial condition is zero velocities and pressure throughout.
The boundary conditions are developed flow at the entry $x=0$, no slip, $u=\mathrm{v}=0$ along solid walls and along the outflow boundary

$$
-p+\mu \frac{\partial u}{\partial x}=\frac{\partial \mathrm{v}}{\partial x}=0 .
$$

The first, third and fifth combination involve a discontinuous pressure field. These are usually more accurate than using a continuous pressure field. We will use only the first combination.
The Galerkin formulation using n-node shape functions for the velocity, and m-node elements for pressure result in element equations that are $(2 n+m) \times(2 n+m)$ of the form

$$
\mathbf{M d}+\mathbf{K d}=\mathbf{F}
$$

where $\quad \mathbf{d}^{\mathrm{T}}=\left[u_{1}, u_{2}, \ldots, u_{n,}, \mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}, p_{1}, p_{2}, \ldots, p_{m}\right]$
The Mass Matrix \mathbf{M} is defined as $\mathbf{M}=\left[\begin{array}{lll}\mathbf{A} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{A} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0}\end{array}\right]$
where \mathbf{A} is the $n \times n$ matrix $\left[\mathrm{a}_{\mathrm{ij}}\right]=\left[\int_{\Omega} N_{i} N_{j} d \Omega\right]$

The non-linear terms are computed explicitly and placed in F that
Takes the form $\quad \mathbf{F}=\left[\begin{array}{c}\mathbf{F}_{x} \\ \mathbf{F}_{y} \\ \mathbf{0}\end{array}\right]$
$\mathbf{F}_{x}=\left[\left(f_{x}\right)_{i}\right]=\left[-\int_{\Omega} N_{i}\left\{\left(\sum_{j} N_{j} u_{j}\right)\left(\sum_{k} \frac{\partial N_{k}}{\partial x} u_{k}\right)+\left(\sum_{j} N_{j} \mathrm{v}_{j}\right)\left(\sum_{k} \frac{\partial N_{k}}{\partial y} u_{k}\right)\right\} d \Omega\right]$ $\mathbf{F}_{y}=\left[\left(f_{y}\right)_{i}\right]=\left[-\int_{\Omega} N_{i}\left\{\left(\sum_{j} N_{j} u_{j}\right)\left(\sum_{k} \frac{\partial N_{k}}{\partial x} \mathrm{v}_{k}\right)+\left(\sum_{j} N_{j} \mathrm{v}_{j}\right)\left(\sum_{k} \frac{\partial N_{k}}{\partial y} \mathrm{v}_{k}\right)\right\} d \Omega\right]$

The boundary line integrals are almost always zero, except in some cases involving open boundaries. They will be discussed in the context of stratified flows

EXAMPLE

Poiseuille flow between parallel plates. The figure shows a region of height H and length 5 H non-dimensionalized using $\mathrm{L}=\mathrm{H} .22$

The steady state solution was calculated using a time dependent formulation. We can also do it through a direct non-linear iteration. The present approach is preferable though because if there are bifurcations in the mode of circulation direct iterative solutions often follow branches that are not physically stable, this does not happen with time dependent solutions.

Treating the convective terms explicitly introduces the stability limitation $c \leq 1$. If the time evolution of the flow is to be captured accurately this does not constitute a restriction, since we should not calculate with $c>1$.

An unconditionally stable algorithm possibly combined with a Newton-Raphson iteration can be used if only the final steadystate is of interest and larger time steps are desired. Also, recall that for highly convective flows the Re number may have to be increased gradually.

24

REMARKS:

1) The backward facing step together with the flow in a driven cavity are the most commonly used benchmark problems and there is a very large amount of data available for comparison.
2) In this elements the pressure is piecewise constant. In some cases, if the data is not smooth, the pressure oscillate from element to element. This is called a "CHECKERBOARD MODE" and appears because the solution space admits functions that are not constant, but for which the divergence vanishes.
This means that there exists a piecewise constant
function $p^{*}(x, y) \neq$ Const. such that

$$
\int_{\Omega} \mathrm{p}^{*}\left[\sum_{j} \frac{\partial N_{j}}{\partial x} u_{j}+\sum_{j} \frac{\partial N_{j}}{\partial x} \mathrm{v}_{j}\right] d \Omega=0 .
$$

It is not hard to show that for the bilinear velocity
piecewise constant pressure element mixed
formulation on a square mesh, a checkerboard
field as shown in the figure satisfies the equation.

3) The appearance of the checkerboard mode does nothing to the accuracy of the velocity solution and the pressure can be readily smoothed using a least squares fit with bilinear elements.

Let $P(x, y)=\sum_{j} N_{j} P_{j}$ denote the bilinear interpolant of the pressure field where P_{j} are the values of the pressure at the nodes, and $p(x, y)=\sum_{k} M_{k} p_{k}$ denote the piecewise constant, calculated pressure. So that $M_{k}=\left\{\begin{array}{lr}1 & \text { in element } k \\ 0 & \text { in all other elements }\end{array}\right.$
Construct the functional $J=\int(P-p)^{2} d \Omega$ and minimize it with respect to the values P_{j}. The Euler equations are

$$
\frac{\partial J}{\partial P_{i}}=2 \int_{\Omega} N_{i}\left[\sum_{j} N_{j} P_{j}-\sum_{k} M_{k} p_{k}\right] d \Omega=0
$$

Steady-state flow over a backward facing step at Re=900. Irregula mesh of 3,000 bilinear elements with piecewise constant pressure (mixed formulation). Backward implicit time stepping combined with Newton-Raphson and Petrov-Galerkin.
The figure shows the steady-state streamlines when $L_{1}=3 H, L_{2}=19 H$, and the step height is $H / 2$

26

This results in a system of equations $\mathbf{A P}=\mathbf{B}$ where \mathbf{A} is the usual mass matrix $\mathbf{A}=\left[a_{i j}\right]=\left[\int_{\Omega} N_{i} N_{j} d \Omega\right]$ and \mathbf{B} is $\mathbf{B}=\left[b_{i}\right]=\left[\int_{\Omega} N_{i}\left(\sum_{k} M_{k} p_{k}\right)\right]$

In rectangular meshes, the use of mass lumping gives the weighted average of the values of the pressure over adjacent elements. The above form is more accurate and extends to isoparametric elements.

