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MULTI-DIMENSIONAL TIME DEPENDENT
CONVECTION-DIFFUSION

Extension of the Petrov-Galerkin method to the equation

in two and three dimensionsis obtained as before by adding an 
anisotropic diffusion and dispersion only in the direction of flow.
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where the functions  are quadratic in time and linear in space.
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In two space dimensions the elements are tri-linear . The figure
below shows a tri-linear space-time element together with the
nodal numbering and coordinate system. Also the shape functions
are given.

1 1 1 1

2 2 1 1

3 2 2 1

4 1 2 1

5 1 1 2

6 2 1 2

7 2 2 2

8 1 2 2

( , , ) ( ) ( ) ( )
( , , ) ( ) ( ) ( )
( , , ) ( ) ( ) ( )
( , , ) ( ) ( ) ( )
( , , ) ( ) ( ) ( )
( , , ) ( ) ( ) ( )
( , , ) ( ) ( ) ( )
( , , ) ( ) ( ) ( )

N x y t L x L y L t
N x y t L x L y L t
N x y t L x L y L t
N x y t L x L y L t
N x y t L x L y L t
N x y t L x L y L t
N x y t L x L y L t
N x y t L x L y L t

=
=
=
=
=
=
=
=

2

8

1 2( ) 1 , ( ) , 0 , , ,L L x y tζ ζζ ζ ζ ζ ζ
ζ ζ

= − = < < Δ =
Δ Δ

1 5 1 1

2 6 2 1

3 7 2 2

4 8 1 2

The functions  are
( , , ) ( , , ) ( ) ( ) ( )
( , , ) ( , , ) ( ) ( ) ( )
( , , ) ( , , ) ( ) ( ) ( )
( , , ) ( , , ) ( ) ( ) ( )

iM
M x y t M x y t L x L y T t
M x y t M x y t L x L y T t
M x y t M x y t L x L y T t
M x y t M x y t L x L y T t

= =
= =
= =
= =

( ) 1t tT t
t t
⎛ ⎞= −⎜ ⎟Δ Δ⎝ ⎠

The parameters α and β are obtained from
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with  defined as in the steady-state case.
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When 0 the stability limit in two dimensions takes the form
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In 2 and 3 dimensions the stability limit is only approximate, and 
it can be expressed in several different ways.
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The Courant number is also approximate and given by
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EXAMPLES
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1) First consider unidirectional flow, 0.25 and v 0. The
 The initial perturbation is  

( , ,0) exp ( 0.25) 0.25 / 0.00125
0.0003125 , 0. The domain 0 1.0 and 0 0.5

is discretized with a unif
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orm mesh 0.025, and  is
chosen so that 0.85 and 20. Results are shown at 2.04.
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2) Purely advective transport at a 25  angle to the x-axis.
0.25, v 0.1166 and the initial condition is

( , ,0) exp ( 0.175) ( 0.175) / 0.00125
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{ }( , ,0) exp ( 0.175) ( 0.175) / 0.00125
0.7332 and  20  same mesh as example 1. The 
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These results are not all that good. In this case there are six elements
to describe the initial perturbalion, i. e. / 6. If we reduce the mesh
size by one half, 0.0125 then / 12. The results 
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REMARKS
1) The above examples illustrate how difficult it can be to simulate
this type of problems and how numerical algorithms must be
carefully evaluated before accepting a solution. Modifications to
the algorithms may also be necessary depending on the problem.

2) The stiffness matrices of convection problems are non-
symmetric which greatly increases the cost of the solutions. This
can be avoided in practice by treating the convective terms
explicitly. However in these methods if            it leads to
unconditionally unstable schemes. However if
we can still compute with c < 1. This argues for the use of
and           in practical situations when the added accuracy is not
needed.  

0β ≠
0 and 0α β≠ =

0α ≠
0β =

3) A method that has been heavily used in the purely convective case
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  is the Taylor-Galerkin method (Do-1984). In one dimension the
idea is to aproximate t  by a truncated Taylor series in time
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be differentiated to get
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This can be discretized to obtain a number of different algorithms
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For example, replacing the time derivative by a forward difference
leads to the Euler-Taylor-Galerkin form

1n n t tφ φ+ Δ Δ
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NOTES:
i) In effect, a stabilizing diffusion has been added to the scheme.
ii) The scheme is accurate, simple and easy to implement.
iii) The solution will not approach the correct limit as it reaches

steady-state.
iv) The extension to include diffusion is difficult and not as accurate.

4) The Petrov-Galerkin method has the unit Courant-Friedrich-Levy
property. That is, if c = 1 the perturbations travel undistorted.

The convection of a Gauss form in the x-direction with α≠0,β≠0
and c = 1 is shown below at t = 0 and t = 2. It shows no error.
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5) Many other methods have been proposed, amongst them: 
The Method of Moments (P-B), Variational approaches (Id), 

Euler-Lagrange (Var-Finn), Hermite cubics (Allen), etc.

6. The method has been extended to the non-linear Burgers
equation. Results show that in the presence of very sharp
fronts small oscillations develop just ahead and behind the front.

EXAMPLE
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VISCOUS INCOMPRESSIBLE FLOW
The Navier-Stokes equations (in two-dimensions for simplicity)
are normally written either in terms of velocity or in terms of
stresses. 
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The boundary segments are
0, ,0 / 2 / 2,0y L x L x L y H y H x LΓ = = ≤ ≤ = ≤ ≤ = ≤ ≤∪ ∪

Example
Flow over a backward facing step
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1 2 31) Notice that the boundary segments , , and  need not be
the same for both velocity components. For example, symmetry 
boundary conditions occur often and are applied as a combination
of a Dirichle

Γ Γ Γ

t condition normal to the symmetry plane and a
Neumann condition along the symmetry plane.

Remarks:

2) Boundary conditions of mixed type are rarely encountered in
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2) Boundary conditions of mixed type are rarely encountered in
fluid flow.
3) Boundary conditions at free surfaces will be discussed later.
4) In general no boundary conditions are needed for the pressure.
However, a reference value must be provided. This is usually
done fixing the pressure at one point in the domain.
5) In some calculations cyclic conditions are imposed along
otherwise open boundaries. This can be done in various ways
depending on the problem and will be discussed later.
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The weak form is stated as follows: Find funcions  and v
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Remarks:
1) The mathematical theory is complex and beyond our scope, we
will be satisfied with stating the results. There are several very
good text books that the interested reader can consult.
2) This is called a “Mixed Variational Formulation” because the
pressure is found in a space different than the velocities.
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The pressure is sought in a subset of ( ) that we refer to as
" ( ) modulo constants" and is denoted by ( / ). 
Because the pressure is only determined up to an arbitrary
constant therefore two
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functions that differ buy a real constant
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constant, therefore, two functions that differ buy a real constant
number are the same function in this space.
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3) Mathematically results can only proved for the continuity 
equation coupled to the linear Stokes equations
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The existence and uniqueness of solutions requires that the 
subspaces containing the solution be compatible. This requires
the existence of a constant >0 such that
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consistent and is known as the “LBB” condition (after 
Ladyzehenskaya, Babuska and Brezzi)

Clearly the analytical spaces automatically satisfy this condition.
However the discretized spaces often violate it, and the elements 
cannot be used or must be modified to satisfy the condition. 

CONSTANT DENSITY FLOWS
Let us assume that 0 and 0, and that  and  are
constant. Write the momentum equations in non-dimensional form 
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Re is the Reynolds number defined as   Re ,  where 

is a characteristic velocity, is the reference density,  is the
characteristic length and is the dynamic viscosity
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ρ
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ρ
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characteristic length and  is the dynamic viscosity.μ
2

0 0The reference pressure is  and the time scale is / .p U L Uρ τ= =
MIXED FORMULATION

The velocity and pressure are approximated using shape functions
( , , ) ( , ) ( )
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k k
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To satisfy the LBB condition the shape functions for the pressure
must be polynomials one order less than for the velocities. The
Combinations of mixed shape functions most often used are
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The first, third and fifth combination involve a discontinuous
pressure field. These are usually more accurate than using a
continuous pressure field. We will use only the first combination.
The Galerkin formulation using n-node shape functions for the
velocity, and m-node elements for pressure result in element
equations that are (2n+m) x (2n+m) of the form

+ =Md Kd F�
here ⎡ ⎤⎣ ⎦

Td
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1 2 , 1 2 n 1 2where        , , ... , v ,v , ...,v , , , ... ,n mu u u p p p⎡ ⎤= ⎣ ⎦
Td

ij

The Mass Matrix  is defined as  

where  is the    matrix  a i jn x n N N d
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∫

A 0 0
M M 0 A 0

0 0 0

A

The stiffness matrix K will contain only the linear part of the spatial
operator, that is the pressure and viscous terms and the continuity
constraint.

x

y

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥

B 0 C
K 0 B C

To avoid having to combine the time stepping with a non-linear
iteration, as well as having to invert a stiffness matrix at each time
step, the convective terms are treated explicitly evaluating them at
The current known time step.
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The non-linear terms are computed explicitly and placed in F that
Takes the form
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The boundary line integrals are almost always zero, except in
some cases involving open boundaries. They will be discussed in
the context of stratified flows. 

EXAMPLE
Poiseuille flow between parallel plates. The figure shows a region
of height H and length 5H non-dimensionalized using L=H.

The exact solution is  , ,
where  is the maximum ve

v(
locity at the center of the channel

( , ) 4 , ) 0 8
e

(1
R

)

m

m
mu x

u

up
x

y u y y x y ∂
− ==

∂
=

Th Fi h h fi i l l i b i d f R 100
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The Figure shows the finite element solution obtained for Re 100
using bilinear elements for velocity, piecewise constant pressure
and a uniform mesh of size 0.1, 0.05.x y

=

Δ = Δ =

The boundary conditions are developed flow at the entry 0,
no slip, v 0 along solid walls and along the outflow boundary

v 0. 

x
u

up
x x

μ

=
= =

∂ ∂
− + = =

∂ ∂

The initial condition is zero velocities and pressure throughout.

The steady state solution was calculated using a time dependent 
formulation. We can also do it through a direct non-linear iteration.
The present approach is preferable though because if there are
bifurcations in the mode of circulation direct iterative solutions 
often follow branches that are not physically stable, this does not
happen with time dependent solutions.

Treating the convective terms explicitly introduces the stability
limitation c ≤ 1. If the time evolution of the flow is to be captured

24

p
accurately this does not constitute a restriction, since we should
not calculate with c > 1.

An unconditionally stable algorithm possibly combined with a 
Newton-Raphson iteration can be used if only the final steady-
state is of interest and larger time steps are desired. Also, recall
that for highly convective flows the Re number may have to be 
increased gradually.
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At high Re numbers the use of a stabilizing method such as Petrov-
Galerkin is necessary. For non-linear problems the algorithms
become complex, and the understanding of how the different 
pieces interact is limited. For example, experience shows that in
problems involving body forces the consistent P-G weighting of the
body forces leads to unstable schemes. 

The results of extensive calculations show that in practice in many
situations we should apply the P-G weights only to the convective 
terms and use only the parameter α. In general for problems of
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forced flow such as the backward facing step, first order accuracy
in time suffices. For problems involving the free transport of 
perturbations second order accuracy in time is a must.
When the Newton-Raphson iteration is used, the convective  term in
the tangent matrix for the x-momentum equation takes the form

  v v and similarly in the y-direction

 a

.

Here

k k
k ku u u uu u

x x y y
∂Δ ∂ ∂Δ ∂

+ Δ + + Δ
∂ ∂ ∂ ∂

 straight forward application of the P-G weights is not correct 
and eventually leads to lack of convergence. Corrections have been 
proposed by Harari-Hughes and Idelsohn.

Steady-state flow over a backward facing step at Re=900. Irregular
mesh of 3,000 bilinear elements with piecewise constant pressure 
(mixed formulation). Backward implicit time stepping combined with
Newton-Raphson and Petrov-Galerkin.

1 2The figure shows the steady-state streamlines when 3 ,  19 ,
and the step height is / 2

L H L H
H

= =
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REMARKS:
1) The backward facing step together with the flow in a driven

cavity are the most commonly used benchmark problems and
there is a very large amount of data available for comparison.

2) In this elements the pressure is piecewise constant. In some
cases, if the data is not smooth, the pressure oscillate from 
element to element. This is called a “CHECKERBOARD MODE”.
and appears because the solution space admits functions that
are not constant but for which the divergence vanishes
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are not constant, but for which the divergence vanishes.
This means that there exists a piecewise constant
function ( , ) . such that

p v 0.

It is not hard to show that for the bilinear velocity- 
piecewise constant pressure el

j j
j j

j j

p x y Const
N N

u d
x x

∗

∗

Ω

≠
∂ ∂⎡ ⎤

+ Ω =⎢ ⎥∂ ∂⎣ ⎦
∑ ∑∫

ement mixed
formulation  on a square mesh, a checkerboard
field as shown in the figure satisfies the equation.

An example where the checkerboard mode is excited is shown
below for the backward facing step at Re=100. The pressure 
along the top wall together with a smoothed pressure are shown.
Methods to smooth the pressure are discussed below and later.
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3) The appearance of the checkerboard mode does nothing to the
accuracy of the velocity solution and the pressure can be readily
smoothed using a least squares fit with bilinear elements. 

Let  ( , )   denote the bilinear interpolant of the

pressure field where  are the values of the pressure at the nodes,
and ( , )  denote the piecewise constant, calculated
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∑

∑
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pressure. So th
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at 
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in element k
M
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⎧
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( )2Construct the functional    and minimize it with

respect to the values . The Euler equations are
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This results in a system of equations   where  is the

usual mass matrix   and  isij i j

i i k k
k
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Ω
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In rectangular meshes, the use of mass lumping gives the
weighted average of the values of the pressure over adjacent

30

weighted average of the values of the pressure over adjacent
elements. The above form is more accurate and extends to
isoparametric elements. 


