Chapter 11. Quantum states for many-electron atoms and atomic spectroscopy

Atomic spectra

H atom:
Not all transitions are allowed, due to conservation of angular momentum (photon has $1 \hbar$ of angular momentum).

Selection rules:

$$
\Delta l= \pm 1, \quad \Delta m_{l}=0, \pm 1
$$

Example:

$$
\begin{aligned}
& 1 \mathrm{~s} \rightarrow 2 \mathrm{~s} \text {, forbidden } \\
& 1 \mathrm{~s} \rightarrow 2 \mathrm{p}_{\mathrm{z}} \text {, allowed } \\
& 1 \mathrm{~s} \rightarrow 3 d_{z^{2}} \text {, forbidden } \\
& 3 \mathrm{~s} \rightarrow 2 \mathrm{p}_{\mathrm{y}} \text {, allowed } \\
& 3 \mathrm{~s} \rightarrow 1 \mathrm{~s} \text {, forbidden }
\end{aligned}
$$

For many-electron atoms, an electronic configuration may give rise to several states with different energies, because of the interaction between electrons (orbital-orbital, spin-spin, and spin-orbital)

Each state is represented by a term symbol:

Total orbital angular momentum \boldsymbol{L} of an atom

$$
\boldsymbol{L}=\boldsymbol{l}_{1}+\boldsymbol{l}_{2}+\ldots
$$

(vector sum)
For a two-electron atom

$$
L=\left|l_{1}-l_{2}\right|,\left|l_{1}-l_{2}\right|+1, \ldots, l_{1}+l_{2} \quad \text { (Clebsch-Gordan series) }
$$

Code of L :

$$
\begin{array}{lllllll}
L: & 0 & 1 & 2 & 3 & 4 & \ldots \\
\mathrm{~S} & \mathrm{P} & \mathrm{D} & \mathrm{~F} & \mathrm{G} & \ldots & \\
\hline
\end{array}
$$

Example: L for $3 \mathrm{p}^{1} 3 \mathrm{~d}^{1}$.

$$
l_{1}=1 \text { and } l_{2}=2 .
$$

so $\quad L=1,2,3$ or three terms P, D, F
Total spin angular momentum \boldsymbol{S} of an atom

$$
\boldsymbol{S}=\boldsymbol{s}_{1}+\boldsymbol{s}_{1}+\ldots
$$

For a two-electron atom

$$
S=\left|s_{1}-s_{2}\right|,\left|s_{1}-s_{2}\right|+1, \ldots, s_{1}+s_{2}
$$

The multiplicity is $2 S+1$
Example: S for a two e- atom.

$$
s_{1}=1 / 2, s_{2}=1 / 2
$$

so $S=0,1$, or multiplicity = 1 (singlet), 3 (triplet).

Degeneracy can be removed by external field.
Since electrons are charged, their rotation and spin generate magnetic fields, and they interact with each other.

A closed shell has $L=0, S=0$. A p^{n} configuration is equivalent to $\mathrm{p}^{6-\mathrm{n}}$ one.

Total angular momentum (Russell-Saunders coupling)

$$
\boldsymbol{J}=\boldsymbol{L}+\boldsymbol{S}
$$

or

$$
J=|L-S|,|L-S|+1, \ldots, L+S
$$

Examples: $\mathrm{He}\left(1 \mathrm{~s}^{2}\right)$

$$
\begin{array}{ll}
l_{1}=l_{2}=0, & L=0 \\
s_{1}=s_{2}=1 / 2, & S=0 \text { (1 violates Pauli's rule) }
\end{array}
$$

So, $J=0$. Term: ${ }^{1} S_{0}$. (close shell atom)
Ground and excited states of $\mathrm{Na},[\mathrm{Ne}] 3 \mathrm{~s}^{1},[\mathrm{Ne}] 3 \mathrm{p}^{1}$.
Single electron (ignore inner e^{-}), $l=0, s=1 / 2$,
$L=0, \quad S=1 / 2(2 S+1=2), \quad J=1 / 2$
So the ground state term is ${ }^{2} S_{1 / 2}$
$L=1, \quad S=1 / 2(2 S+1=2), \quad J=1 / 2,3 / 2$
So the terms are ${ }^{2} \mathrm{P}_{1 / 2}$ and ${ }^{2} \mathrm{P}_{3 / 2}$.

Excited state of Na splits to 2 sublevels because of the interaction between spin and orbital angular momenta (spin-orbit coupling, a relativistic effect)

Energy

$$
E_{L, S, J}=(1 / 2) h c A[J(J+1)-L(L+1)-S(S+1)]
$$

A is the coupling constant that increases with $\sim Z^{4}$, so spinorbit coupling becomes more important for heavy atoms.

Splitting:

$$
\begin{aligned}
\Delta \tilde{v}=\frac{\Delta E}{h c} & =\frac{1}{2} A\left[J(J+1)-J^{\prime}\left(J^{\prime}+1\right)\right] \\
& =\frac{1}{2} \times 11.5 \mathrm{~cm}^{-1}\left[\frac{3}{2}\left(\frac{3}{2}+1\right)-\frac{1}{2}\left(\frac{1}{2}+1\right)\right]=17.25 \mathrm{~cm}^{-1}
\end{aligned}
$$

Selection rules

Not all transitions between energy levels are allowed.

$$
\begin{aligned}
& \Delta S=0 \\
& \Delta L=0, \pm 1 \\
& \Delta J=0, \pm 1 \text { but } J=0 \text { cannot combine with } J=0
\end{aligned}
$$

Fine structure of the Na D lines

$$
\begin{aligned}
& { }^{2} \mathrm{~S}_{1 / 2} \rightarrow{ }^{2} \mathrm{P}_{1 / 2},{ }^{2} \mathrm{P}_{3 / 2} \\
& \Delta S=0, \Delta L=1, \Delta J=0,1 \quad \text { (allowed) }
\end{aligned}
$$

