Chapter 13. Molecular Structure and Energy Levels for Polyatomic Molecules

Valence bond (VB) theory

A localized view: A bond is formed with e-pairs between bonding atoms.

Valence shell electron pair repulsion (VSEPR) model: ligands and lone pairs repel each other.

 CO_2 SO_2 H_2O :

<u>Hybrid orbitals</u>

CH₄ is tetrahedral, but electronic configuration of C($2s^2 2p_x^1 2p_y^1$) suggests divalence.

Promotion and hybridization:

$$2s^{2}, 2p_{x}^{1}, 2p_{y}^{1}, 2p_{y}^{0} \rightarrow 2s^{1}, 2p_{x}^{1}, 2p_{y}^{1}, 2p_{y}^{1}$$

$$\Psi_{h} = s \pm p_{x} \pm p_{y} \pm p_{z} \qquad (\text{total of 4})$$

$$(109.5^{\circ})$$

The 4 sp³ hybrid orbitals are equivalent and responsible for the shape of CH₄.

Other hybrid orbitals:

sp, sp^2 , sp^3

Hybrid orbitals are orthonormal.

BeH₂:

 $Be(2s^2 \rightarrow 2s^1 2p_z^1)$

The two sp orbitals make BeH₂ linear.

H₂O:

 $O(2s^2 2p^4 \rightarrow 2s \ 2p_x 2p_y 2p_z)$

The four sp³ orbitals accommodate 2 lone pairs and 2 bonds with H, making H_2O bent.

Molecular orbital (MO) theory

Dilocalized view: electrons are placed in delocalized MOs.

Walsh diagram

Let's look at H₂A system.

$$\Psi_{MO} = c_1 1 s(\mathbf{H}_a) + c_2 1 s(\mathbf{H}_b) + c_3 2 s(\mathbf{A}) + c_4 2 p_x(\mathbf{A}) + c_5 2 p_y(\mathbf{A}) + c_6 2 p_z(\mathbf{A})$$

Walsh diagram

At linear geometry

At bent geometry

Explains why BeH₂ is linear and H₂O is bent.

Hückel theory

 π system in <u>conjugated molecules</u> (alternating single and double bonds), such as CH₂=CH-CH=CH₂, benzene, etc.

Hückel approximation:

i. Only π MOs are treated and molecular frame is fixed by σ bonds.

ii. Coulomb integrals (α) are set equal.

iii. Overlap integrals (S) are set to zero.

iv. Resonance integrals (β) are equal for neighbors, but zero for non-neighbors.

Ethene:

Secular determinant:

$$\begin{vmatrix} \alpha - E & \beta \\ \beta & \alpha - E \end{vmatrix} = 0$$

Orbital energies

$$E = \alpha \pm \beta$$

Total energy (π electrons) is

$$E = 2(\alpha + \beta) = 2\alpha + 2\beta$$
 (no extra stabilization)

Butadiene: CH₂=CH-CH=CH₂ Secular determinant:

$$\begin{vmatrix} \alpha - E & \beta & 0 & 0 \\ \beta & \alpha - E & \beta & 0 \\ 0 & \beta & \alpha - E & \beta \\ 0 & 0 & \beta & \alpha - E \end{vmatrix} = 0$$

Energies are

$$E = \alpha \pm 1.62\beta, \ \alpha \pm 0.62\beta$$

Total energy:

$$E = 2(\alpha + 1.62\beta) + 2(\alpha + 0.62\beta) = 4\alpha + 4.48\beta$$
$$E_{\pi} = 4\alpha + 4\beta$$

<u>Delocalization energy</u>: extra stabilization energy due to delocalization ($E - E_{\pi} = 0.48\beta$).

Benzene: Secular determinant:

Orbital energies

$$E = \alpha \pm 2\beta, \ \alpha \pm \beta, \ \alpha \pm \beta$$

Total energy

$$E = 2(\alpha + 2\beta) + 4(\alpha + \beta)$$

= $6\alpha + 8\beta$

Delocalization energy is 2β (app. -150 kJ/mol), aromatic stability.

What about $C_6H_6^+$?

$$E = 2(\alpha + 2\beta) + 3(\alpha + \beta)$$

= $5\alpha + 7\beta$

Delocalization energy is 2β .

Band theory for solids

Conductors: conducting and valence bands overlap. Insulators: large band gap between the bands. Semiconductors: small band gap between the bands.