Chapter 14. Electronic Spectroscopy

Molecular term symbols

$$^{2S+1}\Lambda^{reflection}_{parity}$$

For linear molecules:

$$M_{L} = \sum_{i} m_{li}, \quad \Lambda = |M_{L}|,$$
$$M_{S} = \sum_{i} m_{si}, \quad S = |M_{S}|,$$

 Λ:
 0,
 1,
 2,
 ...

 Symbol:
 Σ,
 Π,
 Δ,
 ...

Example:

H₂: $1\sigma^2$, ${}^{1}\Sigma_{g}^{+}$ O₂: $1\sigma^2 2\sigma^{*2} 3\sigma^2 1\pi^4 2\pi^{*2}$, ${}^{3}\Sigma_{g}^{-}$

Ground state is labeled as X, excited states are labeled by A, B, C, etc. for the same spin, and a, b, c, etc for different spins.

Electronic transitions

Selection rules:

 $\Delta \Lambda = 0, \pm 1, \ \Delta S = 0$

<u>Franck-Condon principle</u>: Nuclear positions and momenta do not change during electronic transition (because $m_n \gg m_e$).

Intensity:

$$I \propto \left| \mu_{fi} \right|^2 = \left| \int \Psi_f^* (-e\vec{r}) \Psi_i d\tau \right|^2$$

Separation of motion (B-O approx.):

$$\Psi(\mathbf{r},\mathbf{R}) = \Phi^{(e)}(\mathbf{r})\Phi^{(n)}(\mathbf{R})$$

So

$$\mu_{fi} = \int \Phi_f^{(e)*}(\mathbf{r})(-e\vec{r})\Phi_i^{(e)}(\mathbf{r})d\tau_e \int \Phi_f^{(n)*}(\mathbf{R})\Phi_i^{(n)}(\mathbf{R})d\tau_n$$

1st term determines intensity.

2nd term (<u>Franck-Condon factor</u>) determines vibrational structure.

Commonly seen transitions

<u>Chromophore</u>: functional group responsible for transition.

A. d-d transitions:

Transition metal compounds

d orbitals are not degenerate and can split into two groups, e.g. t_{2g} and e_g .

B. Charge-transfer transitions:

Transfer of e- from ligands to d orbitals of metal. Strong intensities.

MnO₄-

<u>C.</u> $\pi \rightarrow \pi^*$ and $n \rightarrow \pi^*$ transitions

Transitions from a bonding π orbital or a non-bonding n orbital to an anti-bonding π^* orbital.

С=О, С=С

Fate of excited states

Fluorescence and phosphorescence

<u>Fluorescence</u>: spontaneous emission immediately after absorption (0.1-1 ps).

Three steps:

- A. Absorption to excited state
- B. Radiationless decay (collisional energy transfer).
- C. Vertical transition to ground state

<u>Phosphorescence</u>: spontaneous emission after <u>intersystem</u> <u>crossing</u> (0.1-1 s).

Five steps:

- A. Absorption to excited state
- B. Radiationless decay
- C. Transition from excited singlet state to triplet state
- D. Radiationless decay
- E. Weak transition to ground state (spin-forbidden)

Dissociation:

- A. Transition to an excited state
- B. Above dissociation limit
- C. Via curve-crossing (predissociation)

Internal conversion:

A. Transition to an excited singlet state.

B. Radiationless decay

C. Population transfer to ground singlet state (internal conversion).

Photoelectron spectroscopy (UPS and XPS)

Electrons in molecules can be ejected by photon.

$$hv = \frac{1}{2}m_ev^2 + I_i$$

Binding energy of e- in molecule can be obtained from kinetic energy of free e-.

<u>Ultraviolet photoelectron spectroscopy (UPS)</u>: eject valence electrons, used for identify MO energies

<u>X-ray photoelectron spectroscopy (XPS)</u>: eject core electrons, mainly used in chemical analysis.