Chapter 16. Molecular Symmetry

I. Symmetry

Elements
axis
mirror plane inversion center

Operations
rotation about an axis
reflection thru a plane
inversion thru a center

Five symmetry elements and corresponding operations:
i. Doing nothing, identity E
ii. Rotation about an n-fold axis C_{n} A rotation of $360^{\circ} / n$.
C_{3}
C_{4}
C_{6}

Axis with the largest n is the principal axis.
n symmetry operations:
$n=3$

$$
\begin{aligned}
& C_{3}^{1} \quad C_{3}^{2} \quad C_{3}^{3}=E \\
& C_{3}^{1} C_{3}^{1}=C_{3}^{2}, \quad C_{3}^{1} C_{3}^{2}=E
\end{aligned}
$$

iii. Inversion through a center of symmetry i
iv. Reflection through a mirror plane σ

Vertical plane σ_{v} : parallel to principal axis.
Horizontal plane σ_{h} : perpendicular to principal axis

Dihedral plane σ_{d} : bisects two C_{2} axes perpendicular to the principal axis.
v. Improper rotation about an axis of improper rotation S_{n}

Symmetry groups

Group: A collection of elements (symmetry operations) that satisfy the following conditions:
a. There is always an identity element.
b. Every element has an inverse.
c. Any products of two elements are also elements of the group.
d. Multiplication of elements is associative $A(B C)=(A B) C$.

Point group: at least a point unchanged. A molecule belongs to a point group.

Space group: point group + translational symmetries.
$C_{1}: E$
$C_{i}: \quad E, i$
$C_{s}: \quad E, \sigma$

$$
C_{n}: \quad E, C_{n}
$$

$$
C_{n v}: E, C_{n}, n \sigma_{v}
$$

$$
C_{n h}: E, C_{n}, \sigma_{h}
$$

$D_{n}: E, C_{n}, n C_{2}$ (2-fold axes perpendicular to C_{n})

$$
D_{n h}: \quad E, C_{n}, n C_{2}, \sigma_{h}
$$

$$
D_{n d}: \quad E, C_{n}, n C_{2}, n \sigma_{d}
$$

$$
\begin{aligned}
& S_{n}: E, S_{n} . \\
& C_{i}=S_{2}
\end{aligned}
$$

Tetrahedral groups T, T_{h} and T_{d} Octahedral groups O, O_{h} and O_{d} Rotational group R_{3}. Group can be determined by flow diagram.

Consequences of symmetry

i. Polarity

A polar molecule (with permanent electric dipole) belongs to one of the groups $C_{n}, C_{n v}$ and C_{s}.

CO belongs to $C_{\infty \nu}$ and is polar.
N_{2} belongs to $D_{\infty h}$ and is non-polar.

ii. Chirality

Chiral molecule: cannot be superimposed by its mirror image.

A chiral molecule must not have i or σ. Chiral molecules can change the polarization of light.

Usefulness:

i. Classify molecules.
ii. Save computational efforts.
iii. Determine selection rules.

II. Character table

Representation and character table

Representation: mathematical elements representing symmetry operations.

Example: $\mathrm{H}_{2} \mathrm{O}\left(C_{2 v}\right.$ group, four elements)
E: $\quad(x y z) \rightarrow(x y z)$
$C_{2}^{1}: \quad(x y z) \rightarrow(-x-y z)$
$\sigma_{v}: \quad(x y z) \rightarrow(x-y z)$
$\sigma_{v}{ }_{v}: \quad(x y z) \rightarrow(-x y z)$
$x y z$ as bases
In particular,

$$
\sigma_{v} C_{2}^{1}(x y z)=\sigma_{v}(-x-y z)=(-x y z)=\sigma_{v}^{\prime}(x y z)
$$

Multiplication table

${ }^{\text {st }}$ operation				
$2^{\text {nd }}$ operation	E,	C_{2}^{1},	σ_{v},	$\sigma_{v}{ }^{\prime}$
E	E,	C_{2}^{1},	σ_{v},	$\sigma_{v}{ }^{\prime}$
C_{2}^{1}	C_{2}^{1},	E,	$\sigma_{v}{ }^{\prime}$,	σ_{v}
σ_{v}	σ_{v},	$\sigma_{v}{ }^{\prime}$,	E,	C_{2}^{1}
$\sigma_{v}{ }^{\prime}$	$\sigma_{v}{ }^{\prime}$,	σ_{v},	C_{2}^{1},	E

Matrix rep:
E: $\quad\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$
$C_{2}^{1}: \quad\left(\begin{array}{ccc}-1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}-x \\ -y \\ z\end{array}\right)$
$\sigma_{v}: \quad\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}x \\ -y \\ z\end{array}\right)$
$\sigma_{v}^{\prime}: \quad\left(\begin{array}{ccc}-1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}-x \\ y \\ z\end{array}\right)$
Verification:

$$
\sigma_{v} C_{2}^{1}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)=\sigma_{v}^{\prime}
$$

3-D rep $\Gamma^{(3)}$ spanned by $(x y z)$

Trace of matrix (sum of diagonal elements) is called character χ

	E	C_{2}^{1}	σ_{v}	$\sigma_{v}{ }^{\prime}$
χ	3	-1	1	1

$\Gamma^{(3)}$ can be reduced to a direct sum of two matrix reps:

$$
\Gamma^{(3)}=\Gamma^{(1)}+\Gamma^{(2)}
$$

$\Gamma^{(1)}$ is spanned by z (irreducible representation, irrep).

	E	C_{2}^{1}	σ_{v}	$\sigma_{v}{ }^{\prime}$	
χ	1	1	1	1	$\left(\Gamma^{(1)}\right)$

$\Gamma^{(2)}$ can be further reduced to the direct sum of two 1D reps spanned by x and y.

Character table: list of characters of all its irreps.

	E	C_{2}^{1}	σ_{v}	$\sigma_{v}{ }^{\prime}$	basis
A_{1}	1	1	1	1	z
$\mathrm{~A}_{2}$	1	1	-1	-1	$x y$
$\mathrm{~B}_{1}$	1	-1	1	-1	x
$\mathrm{~B}_{2}$	1	-1	-1	1	y

The last column is the basis for different irreps.
$x y \xrightarrow{E} x y, \quad x y \xrightarrow{C_{2}^{1}} x y, x y \xrightarrow{\sigma_{v}} x(-y), x y \xrightarrow{\sigma_{v}^{\prime}}(-x) y$

Symmetry species (label of irrep)

A: 1-D irreps with +1 under principal rotation.
B: 1-D irreps with -1
E: 2-D irreps.
T: 3-D irreps.
Subscript determined by χ for σ_{v} or perpendicular C_{2} axis.
Dimension of an irrep $\left(d_{j}\right)$: size of matrix of the irrep. Order (h): total number of operations.
Class: operations of the same kind.
Properties of characters for irreps
i. Characters are unique, independent of basis.
ii. Characters of elements in the same class are identical.
iii. Order of a group is related to dimensions of irreps by

$$
\sum_{j} d_{j}^{2}=h
$$

iv. Characters form a set of mutually orthogonal vectors (Grand Orthogonality Theorem).

$$
\sum_{O} \chi_{i}(O) \chi_{j}(O)=h \delta_{i j}
$$

where O denotes the symmetry operations.

$$
\mathrm{A}_{1} \mathrm{~A}_{1}:(1 \times 1+1 \times 1+1 \times 1+1 \times 1)=4
$$

$$
\mathrm{A}_{1} \mathrm{~A}_{2}:[1 \times 1+1 \times 1+1 \times(-1)+1 \times(-1)]=0
$$

v. Number of irreps $=$ number of classes.
vi. Any rep can be decomposed into irreps:

$$
\begin{aligned}
& \chi(O)=\sum_{i} a_{i} \chi_{i}(O) \\
& a_{i}=\frac{1}{h} \sum_{O} \chi(O) \chi_{i}(O)
\end{aligned}
$$

vii. To construct the basis for a particular irrep (i), define projection operator:

$$
\hat{P}_{i}=\frac{d_{i}}{h} \sum_{O} \chi_{i}(O) \hat{O}
$$

where d_{i} is the dimensionality of the irrep.
Example: A matrix rep for $C_{2 v}$ group has the following characters: $\Gamma=4,2,0,2$. Determine how many times each irrep is contained in it.

$$
\begin{aligned}
& a_{A_{1}}=\frac{1}{4}[4 \times 1+2 \times 1+0 \times 1+2 \times 1]=2 \\
& a_{A_{2}}=\frac{1}{4}[4 \times 1+2 \times 1+0 \times(-1)+2 \times(-1)]=1
\end{aligned}
$$

$$
\begin{aligned}
& a_{B_{1}}=\frac{1}{4}[4 \times 1+2 \times(-1)+0 \times 1+2 \times(-1)]=0 \\
& a_{B_{2}}=\frac{1}{4}[4 \times 1+2 \times(-1)+0 \times(-1)+2 \times 1]=1
\end{aligned}
$$

In other words:

$$
\Gamma=2 A_{1}+A_{2}+B_{2}
$$

III. Applications

Classification of MOs $\left(\mathrm{H}_{2} \mathrm{O}\right)$:

$$
a_{1}: \Psi=c_{1}\left(\mathrm{sH}_{a}+\mathrm{sH}_{b}\right)+c_{2} \mathrm{sO}+c_{3} \mathrm{p}_{\mathrm{z}} \mathrm{O}
$$

because this MO is invariant under all symmetry operations in $C_{2 v}$. Thus, it is a base for the A_{1} irrep.

Similarly,

$$
b_{2}: \Psi=c_{1}\left(\mathrm{sH}_{a}-\mathrm{sH}_{b}\right)+c_{2} \mathrm{p}_{\mathrm{y}} \mathrm{O}
$$

Orbital degeneracy is determined by χ under E.

Vanishing integrals and SALC:

Only AOs with the same symmetry species form MOs because otherwise the overlap integral is zero.

Consider an overlap integral

$$
I=\int f_{1} f_{2} \mathrm{~d} \tau
$$

$f_{1} f_{2}$ must contain the total symmetric irrep A_{1} if I is non-zero.
Example: Judge whether I is zero if $f_{1}=\mathrm{p}_{x}$ and $f_{2}=\mathrm{p}_{y}$ for $\mathrm{H}_{2} \mathrm{O}$.
i. Find the irrep each function belongs to and write its characters.

$f_{1}:$	B_{1}	1	-1	1	-1
$f_{2}:$	B_{2}	1	-1	-1	1

ii. Multiply them together by column
$\begin{array}{llllll}f_{1} f_{2}: & 1 & 1 & -1 & -1\end{array}$
iii. Find out if it contains A_{1}. If not, $I=0$.

The characters belong to the A_{2} irrep. So I is zero.
A spectral transition is forbidden if the transition dipole is zero.
Example. Judge whether

$$
I=\int f_{1} f_{2} f_{3} \mathrm{~d} \tau
$$

is zero if $f_{1}=\mathrm{p}_{x}, f_{2}=\mathrm{p}_{y}$ and $f_{3}=x y$ for $\mathrm{H}_{2} \mathrm{O}$.

The characters for the bases are

$f_{1}:$	B_{1}	1	-1	1	-1
$f_{2}:$	B_{2}	1	-1	-1	1
$f_{3}:$	A_{2}	1	1	-1	-1

The product:
$\begin{array}{llllll}f_{1} f_{2} f_{3}: & 1 & 1 & 1 & 1\end{array}$
So, the characters belong to the A_{1} irrep. So I may be non-zero (but could be very small).

Symmetry-adapted linear combination

LCAO-MO with molecular symmetry is called symmetryadapted linear combinations (SALC).

Projection operator method:

The projection operator for a particular irrep (i) is defined as follows:

$$
\hat{P}_{i}=\frac{d_{i}}{h} \sum_{o} \chi_{i}(O) \hat{O}
$$

For the A_{1} irrep in $C_{2 \mathrm{v}}$ for $\mathrm{H}_{2} \mathrm{O}$, we have

$$
\hat{P}_{A_{1}}=\frac{1}{4}\left(E+C_{2}^{1}+\sigma_{v}+\sigma_{v}^{\prime}\right)
$$

and

$$
\begin{aligned}
\hat{P}_{A_{1}} \mathrm{sH}_{a} & =\frac{1}{4}\left(E+C_{2}^{1}+\sigma_{v}+\sigma_{v}^{\prime}\right) \mathrm{sH}_{a} \\
& =\frac{1}{4}\left(\mathrm{sH}_{a}+\mathrm{sH}_{b}+\mathrm{sH}_{b}+\mathrm{sH}_{a}\right)=\frac{1}{2}\left(\mathrm{sH}_{a}+\mathrm{sH}_{b}\right) \\
\hat{P}_{A_{1}} \mathrm{sH}_{b} & =\frac{1}{2}\left(\mathrm{sH}_{a}+\mathrm{sH}_{b}\right) \\
\hat{P}_{A_{1}} \mathrm{sO} & =\frac{1}{4}\left(E+C_{2}^{1}+\sigma_{v}+\sigma_{v}^{\prime}\right) \mathrm{sO} \\
& =\frac{1}{4}(\mathrm{sO}+\mathrm{sO}+\mathrm{sO}+\mathrm{sO})=\mathrm{sO} \\
\hat{P}_{A_{1}} \mathrm{p}_{\mathrm{x}} \mathrm{O} & =0 \\
\hat{P}_{A_{1}} \mathrm{p}_{\mathrm{y}} \mathrm{O} & =0 \\
\hat{P}_{A_{1}} \mathrm{p}_{\mathrm{z}} \mathrm{O} & =\mathrm{p}_{\mathrm{z}} \mathrm{O}
\end{aligned}
$$

So

$$
a_{1}: \Psi=c_{1}\left(\mathrm{sH}_{a}+\mathrm{sH}_{b}\right)+c_{2} \mathrm{sO}+c_{3} \mathrm{p}_{\mathrm{z}} \mathrm{O}
$$

For the B_{2} irrep, we have

$$
\hat{P}_{B_{2}}=\frac{1}{4}\left(E-C_{2}^{1}-\sigma_{v}+\sigma_{v}^{\prime}\right)
$$

and

$$
\begin{aligned}
& \hat{P}_{B_{2}} \mathrm{sH}_{a}=\frac{1}{4}\left(E-C_{2}^{1}-\sigma_{v}+\sigma_{v}^{\prime}\right) \mathrm{sH}_{a} \\
&=\frac{1}{4}\left(\mathrm{sH}_{a}-\mathrm{sH}_{b}-\mathrm{sH}_{b}+\mathrm{sH}_{a}\right)=\frac{1}{2}\left(\mathrm{sH}_{a}-\mathrm{sH}_{b}\right) \\
& \hat{P}_{B_{2}} \mathrm{sO}=0 \\
& \hat{P}_{B_{2}} \mathrm{p}_{\mathrm{x}} \mathrm{O}=0 \\
& \hat{P}_{B_{2}} \mathrm{p}_{\mathrm{y}} \mathrm{O}=\mathrm{p}_{\mathrm{y}} \mathrm{O} \\
& \hat{P}_{B_{2}} \mathrm{p}_{\mathrm{z}} \mathrm{O}=0
\end{aligned}
$$

So

$$
b_{2}: \Psi=c_{1}\left(\mathrm{sH}_{a}-\mathrm{sH}_{b}\right)+c_{2} \mathrm{p}_{\mathrm{y}} \mathrm{O}
$$

Tabulation method:
i. Tabulate results of all operation on AOs,
ii. Multiply the characters to each column,
iii. Add together all the results.

	sH_{a}	sH_{b}	sO	$\mathrm{p}_{x} \mathrm{O}$	$\mathrm{p}_{y} \mathrm{O}$	$\mathrm{p}_{z} \mathrm{O}$
E	sH_{a}	sH_{b}	sO	$\mathrm{p}_{x} \mathrm{O}$	$\mathrm{p}_{y} \mathrm{O}$	$\mathrm{p}_{z} \mathrm{O}$

C_{2}^{1}	sH_{b}	sH_{a}	sO	$-\mathrm{p}_{x} \mathrm{O}$	$-\mathrm{p}_{y} \mathrm{O}$	$\mathrm{p}_{z} \mathrm{O}$
σ_{v}	sH_{b}	sH_{a}	sO	$\mathrm{p}_{x} \mathrm{O}$	$-\mathrm{p}_{y} \mathrm{O}$	$\mathrm{p}_{z} \mathrm{O}$
$\sigma_{v}{ }^{\prime}$	sH_{a}	sH_{b}	sO	$-\mathrm{p}_{x} \mathrm{O}$	$\mathrm{p}_{y} \mathrm{O}$	$\mathrm{p}_{z} \mathrm{O}$

For A_{1} species, multiply ($\left.\begin{array}{llll}1 & 1 & 1 & 1\end{array}\right)$ to the first column:

$$
\Phi=\left(\mathrm{sH}_{a}+\mathrm{sH}_{b}+\mathrm{sH}_{b}+\mathrm{sH}_{a}\right) / 4=\left(\mathrm{sH}_{a}+\mathrm{sH}_{b}\right) / 2
$$

second column:

$$
\Phi=\left(\mathrm{sH}_{b}+\mathrm{sH}_{a}+\mathrm{sH}_{a}+\mathrm{sH}_{b}\right) / 4=\left(\mathrm{sH}_{a}+\mathrm{sH}_{b}\right) / 2
$$

third column:

$$
\Phi=\mathrm{sO}
$$

fourth and fifth columns:

$$
\Phi=0
$$

and the sixth column:

$$
\Phi=\mathrm{p}_{z} \mathrm{O}
$$

So, the SALC-MO with A_{1} symmetry (the a_{1} orbital) is the sum of all the above:

$$
a_{1}: \Psi=c_{1}\left(\mathrm{sH}_{a}+\mathrm{sH}_{b}\right)+c_{2} \mathrm{sO}+c_{3} \mathrm{p}_{\mathrm{z}} \mathrm{O}
$$

For the B_{2} irrep, we have for $1^{\text {st }}\left(\right.$ and $\left.2^{\text {nd }}\right)$ column

$$
\Phi=\left(\mathrm{sH}_{a}-\mathrm{sH}_{b}-\mathrm{sH}_{b}+\mathrm{sH}_{a}\right) / 4=\left(\mathrm{sH}_{a}-\mathrm{sH}_{b}\right) / 2
$$

$3^{\text {rd }}$ and $4^{\text {th }}$ columns

$$
\Phi=0
$$

$5^{\text {th }}$ column

$$
\Phi=\mathrm{p}_{\mathrm{y}} \mathrm{O}
$$

$6^{\text {th }}$ column

$$
\Phi=0
$$

So

$$
b_{2}: \Psi=c_{1}\left(\mathrm{sH}_{a}-\mathrm{sH}_{b}\right)+c_{2} \mathrm{p}_{\mathrm{y}} \mathrm{O}
$$

