Chapter 16. Molecular Symmetry

I. Symmetry

Elements

Operations

axis	rotation about an axis
mirror plane	reflection thru a plane
inversion center	inversion thru a center

Five symmetry elements and corresponding operations:

i. Doing nothing, identity E

ii. <u>Rotation</u> about an n-fold <u>axis</u> C_n A rotation of $360^{\circ}/n$.

 C_3 C_4 C_6 Axis with the largest *n* is the principal axis. *n* symmetry operations: n = 3

$$C_3^1$$
 C_3^2 $C_3^3 = E$
 $C_3^1 C_3^1 = C_3^2$, $C_3^1 C_3^2 = E$

iii. Inversion through a center of symmetry i

iv. <u>Reflection</u> through a <u>mirror plane</u> σ

<u>Vertical plane</u> σ_v : parallel to principal axis. <u>Horizontal plane</u> σ_h : perpendicular to principal axis

<u>Dihedral plane</u> σ_d : bisects two C_2 axes perpendicular to the principal axis.

v. <u>Improper rotation</u> about an <u>axis of improper rotation</u> S_n

Rotation + reflection

Symmetry groups

<u>Group:</u> A collection of elements (symmetry operations) that satisfy the following conditions:

- a. There is always an identity element.
- b. Every element has an inverse.
- c. Any products of two elements are also elements of the group.
- d. Multiplication of elements is associative A(BC)=(AB)C.

<u>Point group</u>: at least a point unchanged. A molecule belongs to a point group.

<u>Space group</u>: point group + translational symmetries.

 $C_1 : E$

 $C_i: E, i$

$C_s: E, \sigma$

$$C_{nv}$$
: $E, C_n, n\sigma_v$

$$C_{nh}$$
: E, C_n, σ_h

 D_n : E, C_n , nC_2 (2-fold axes perpendicular to C_n)

$$D_{nh}: E, C_n, nC_2, \sigma_h$$

$$D_{nd}$$
: $E, C_n, nC_2, n\sigma_d$

$$S_n: E, S_n$$
.
 $C_i = S_2$

Tetrahedral groups T, T_h and T_d Octahedral groups O, O_h and O_d Rotational group R_3 . Group can be determined by flow diagram.

Consequences of symmetry

i. <u>Polarity</u>

A polar molecule (with permanent electric dipole) belongs to one of the groups C_n , C_{nv} and C_s .

CO belongs to $C_{\infty y}$ and is polar.

 N_2 belongs to $D_{\infty h}$ and is non-polar.

ii. Chirality

<u>Chiral molecule</u>: cannot be superimposed by its mirror image.

A chiral molecule must not have *i* or σ . Chiral molecules can change the polarization of light.

Usefulness:

- i. Classify molecules.
- ii. Save computational efforts.
- iii. Determine selection rules.

II. Character table

Representation and character table

<u>Representation</u>: mathematical elements representing symmetry operations.

Example: $H_2O(C_{2\nu}$ group, four elements)

E:	$(x y z) \rightarrow (x y z)$
C_{2}^{1} :	$(x \ y \ z) \rightarrow (-x \ -y \ z)$
σ_v :	$(x y z) \rightarrow (x - y z)$
σ_{v}' :	$(x y z) \rightarrow (-x y z)$

x y z as bases

In particular,

$$\sigma_v C_2^1(x \ y \ z) = \sigma_v(-x \ -y \ z) = (-x \ y \ z) = \sigma_v'(x \ y \ z)$$

Multiplication table

	1 st operation				
2 nd operation	Ε,	C_{2}^{1} ,	σ_{v} ,	σ_{v}'	
Ε	Ε,	C_{2}^{1} ,	σ_{v} ,	σ_{v}'	
C_2^1	$C_{2}^{1},$	Ε,	σ_{v} ',	σ_v	
σ_v	σ_{v}	σ,',	Ε,	C_2^1	
σ_{v}'	σ,',	σ_{v} ,	C_{2}^{1} ,	E	

Matrix rep:

E:
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$C_2^1: \qquad \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -x \\ -y \\ z \end{pmatrix}$$

$$\sigma_{v}: \qquad \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x \\ -y \\ z \end{pmatrix}$$

$$\sigma_{v}': \qquad \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -x \\ y \\ z \end{pmatrix}$$

Verification:

$$\sigma_{v}C_{2}^{1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \sigma_{v}'$$

3-D rep $\Gamma^{(3)}$ spanned by (x y z)

Trace of matrix (sum of diagonal elements) is called <u>character</u> χ

E

$$C_2^1$$
 $σ_v$
 $σ_v'$
 χ
 3
 -1
 1
 1
 ($\Gamma^{(3)}$)

 $\Gamma^{(3)}$ can be reduced to a direct sum of two matrix reps:

$$\Gamma^{(3)} = \Gamma^{(1)} + \Gamma^{(2)}$$

 $\Gamma^{(1)}$ is spanned by *z* (irreducible representation, irrep).

 $\Gamma^{(2)}$ can be further reduced to the direct sum of two 1D reps spanned by *x* and *y*.

Character table: list of characters of all its irreps.

	E	C_2^1	σ_v	σ_{v}'	basis
A ₁	1	1	1	1	Z
A_2	1	1	-1	-1	xy
B ₁	1	-1	1	-1	x
B ₂	1	-1	-1	1	${\mathcal{Y}}$

The last column is the basis for different irreps.

$$xy \xrightarrow{E} xy, xy \xrightarrow{C_2^1} xy, xy \xrightarrow{\sigma_v} x(-y), xy \xrightarrow{\sigma'_v} (-x)y$$

<u>Symmetry species</u> (label of irrep)

- A: 1-D irreps with +1 under principal rotation.
- B: 1-D irreps with -1
- E: 2-D irreps.
- T: 3-D irreps.

Subscript determined by χ for σ_{ν} or perpendicular C_2 axis.

Dimension of an irrep (d_i) : size of matrix of the irrep. Order (h): total number of operations. Class: operations of the same kind.

Properties of characters for irreps

- i. Characters are unique, independent of basis.
- ii. Characters of elements in the same class are identical.
- iii. Order of a group is related to dimensions of irreps by

$$\sum_{j}d_{j}^{2}=h$$

iv. Characters form a set of mutually orthogonal vectors (Grand Orthogonality Theorem).

$$\sum_{O} \chi_i(O) \chi_j(O) = h \delta_{ij}$$

where O denotes the symmetry operations.

A₁A₁:
$$(1 \times 1 + 1 \times 1 + 1 \times 1 + 1 \times 1) = 4$$

A₁A₂: $[1 \times 1 + 1 \times 1 + 1 \times (-1) + 1 \times (-1)] = 0$

- v. Number of irreps = number of classes.
- vi. Any rep can be decomposed into irreps:

$$\chi(O) = \sum_{i} a_{i} \chi_{i}(O)$$
$$a_{i} = \frac{1}{h} \sum_{O} \chi(O) \chi_{i}(O)$$

vii. To construct the basis for a particular irrep (*i*), define projection operator:

$$\hat{P}_i = \frac{d_i}{h} \sum_{O} \chi_i(O) \hat{O},$$

where d_i is the dimensionality of the irrep.

Example: A matrix rep for C_{2v} group has the following characters: $\Gamma=4, 2, 0, 2$. Determine how many times each irrep is contained in it.

$$a_{A_1} = \frac{1}{4} [4 \times 1 + 2 \times 1 + 0 \times 1 + 2 \times 1] = 2$$

$$a_{A_2} = \frac{1}{4} [4 \times 1 + 2 \times 1 + 0 \times (-1) + 2 \times (-1)] = 1$$

$$a_{B_1} = \frac{1}{4} \left[4 \times 1 + 2 \times (-1) + 0 \times 1 + 2 \times (-1) \right] = 0$$

$$a_{B_2} = \frac{1}{4} \left[4 \times 1 + 2 \times (-1) + 0 \times (-1) + 2 \times 1 \right] = 1$$

In other words:

$$\Gamma = 2A_1 + A_2 + B_2$$

III. Applications

Classification of MOs (H₂O):

$$a_1$$
: $\Psi = c_1(\mathbf{sH}_a + \mathbf{sH}_b) + c_2\mathbf{sO} + c_3\mathbf{p}_2\mathbf{O}$

because this MO is invariant under all symmetry operations in C_{2v} . Thus, it is a base for the A₁ irrep.

Similarly,

$$b_2$$
: $\Psi = c_1(\mathbf{sH}_a - \mathbf{sH}_b) + c_2 \mathbf{p}_{\mathbf{v}} \mathbf{O}$

Orbital degeneracy is determined by χ under *E*.

Vanishing integrals and SALC:

Only AOs with the same symmetry species form MOs because otherwise the overlap integral is zero.

Consider an overlap integral

$$I = \int f_1 f_2 \mathrm{d}\tau$$

 $f_1 f_2$ must contain the total symmetric irrep A₁ if *I* is non-zero. Example: Judge whether *I* is zero if $f_1 = p_x$ and $f_2 = p_y$ for H₂O. i. Find the irrep each function belongs to and write its characters. f_1 : B_1 1-11 f_2 : B_2 1-1-1 -1 1 ii. Multiply them together by column 1 -1 $f_1 f_2$: 1 -1 iii. Find out if it contains A_1 . If not, I = 0. The characters belong to the A_2 irrep. So *I* is zero. A spectral transition is forbidden if the transition dipole is zero.

Example. Judge whether

$$I = \int f_1 f_2 f_3 \mathrm{d}\tau$$

is zero if $f_1 = p_x$, $f_2 = p_y$ and $f_3 = xy$ for H₂O.

The characters for the bases are

-1 1
-1 -1

The product:

 $f_1 f_2 f_3$: 1 1 1

So, the characters belong to the A_1 irrep. So *I* may be non-zero (but could be very small).

Symmetry-adapted linear combination

LCAO-MO with molecular symmetry is called symmetryadapted linear combinations (SALC).

Projection operator method:

The projection operator for a particular irrep (i) is defined as follows:

$$\hat{P}_i = \frac{d_i}{h} \sum_{O} \chi_i(O) \hat{O}$$

For the A_1 irrep in C_{2v} for H_2O , we have

$$\hat{P}_{A_1} = \frac{1}{4} \left(E + C_2^1 + \sigma_v + \sigma'_v \right)$$

and

So

$$\hat{P}_{A_{1}} \mathrm{sH}_{a} = \frac{1}{4} \left(E + C_{2}^{1} + \sigma_{v} + \sigma_{v}^{\prime} \right) \mathrm{sH}_{a}$$

$$= \frac{1}{4} \left(\mathrm{sH}_{a} + \mathrm{sH}_{b} + \mathrm{sH}_{b} + \mathrm{sH}_{a} \right) = \frac{1}{2} \left(\mathrm{sH}_{a} + \mathrm{sH}_{b} \right)$$

$$\hat{P}_{A_{1}} \mathrm{sH}_{b} = \frac{1}{2} \left(\mathrm{sH}_{a} + \mathrm{sH}_{b} \right)$$

$$\hat{P}_{A_{1}} \mathrm{sO} = \frac{1}{4} \left(E + C_{2}^{1} + \sigma_{v} + \sigma_{v}^{\prime} \right) \mathrm{sO}$$

$$= \frac{1}{4} \left(\mathrm{sO} + \mathrm{sO} + \mathrm{sO} + \mathrm{sO} \right) = \mathrm{sO}$$

$$\hat{P}_{A_{1}} \mathrm{p}_{x} \mathrm{O} = 0$$

$$\hat{P}_{A_{1}} \mathrm{p}_{y} \mathrm{O} = 0$$

$$\hat{P}_{A_{1}} \mathrm{p}_{z} \mathrm{O} = \mathrm{p}_{z} \mathrm{O}$$

$$a_1: \Psi = c_1(\mathbf{sH}_a + \mathbf{sH}_b) + c_2\mathbf{sO} + c_3\mathbf{p}_z\mathbf{O}$$

For the B₂ irrep, we have

$$\hat{P}_{B_{2}} = \frac{1}{4} \left(E - C_{2}^{1} - \sigma_{v} + \sigma_{v}' \right)$$

and
$$\hat{P}_{B_{2}} \mathrm{SH}_{a} = \frac{1}{4} \left(E - C_{2}^{1} - \sigma_{v} + \sigma_{v}' \right) \mathrm{SH}_{a}$$
$$= \frac{1}{4} \left(\mathrm{sH}_{a} - \mathrm{sH}_{b} - \mathrm{sH}_{b} + \mathrm{sH}_{a} \right) = \frac{1}{2} \left(\mathrm{sH}_{a} - \mathrm{sH}_{b} \right)$$
$$\hat{P}_{B_{2}} \mathrm{SO} = 0$$
$$\hat{P}_{B_{2}} \mathrm{p}_{x} \mathrm{O} = 0$$
$$\hat{P}_{B_{2}} \mathrm{p}_{x} \mathrm{O} = 0$$
$$\hat{P}_{B_{2}} \mathrm{p}_{y} \mathrm{O} = \mathrm{p}_{y} \mathrm{O}$$
$$\hat{P}_{B_{2}} \mathrm{p}_{z} \mathrm{O} = 0$$
So

$$b_2$$
: $\Psi = c_1(\mathbf{sH}_a - \mathbf{sH}_b) + c_2 \mathbf{p}_y \mathbf{O}$

Tabulation method:

i. Tabulate results of all operation on AOs,

ii. Multiply the characters to each column,

iii. Add	d together	all the res	ults.			
	sHa	sH_b	sO	p _x O	p _y O	p _z O
E	sHa	sH_b	sO	p _x O	p _y O	p _z O

C_2^1	sH_b	sH _a	sO	$-p_xO$	-p _y O	p _z O
σ_v	sH_b	sHa	sO	$p_x O$	-p _y O	p _z O
σ_{v}'	sH _a	sH_b	sO	$-p_xO$	p _y O	p _z O

For A_1 species, multiply $(1 \ 1 \ 1 \ 1)$ to the first column:

$$\Phi = (\mathrm{sH}_a + \mathrm{sH}_b + \mathrm{sH}_b + \mathrm{sH}_a)/4 = (\mathrm{sH}_a + \mathrm{sH}_b)/2$$

second column:

$$\Phi = (\mathbf{sH}_b + \mathbf{sH}_a + \mathbf{sH}_a + \mathbf{sH}_b)/4 = (\mathbf{sH}_a + \mathbf{sH}_b)/2$$

third column:

$$\Phi = sO$$

fourth and fifth columns:

$$\Phi = 0$$

and the sixth column:

$$\Phi = p_z O$$

So, the SALC-MO with A_1 symmetry (the a_1 orbital) is the sum of all the above:

$$a_1: \Psi = c_1(\mathbf{sH}_a + \mathbf{sH}_b) + c_2\mathbf{sO} + c_3\mathbf{p}_2\mathbf{O}$$

For the B_2 irrep, we have for 1^{st} (and 2^{nd}) column

$$\Phi = (\mathrm{sH}_a - \mathrm{sH}_b - \mathrm{sH}_b + \mathrm{sH}_a)/4 = (\mathrm{sH}_a - \mathrm{sH}_b)/2$$

 3^{rd} and 4^{th} columns

 $\Phi = 0$

5th column

$$\Phi = p_y O$$

6th column

 $\Phi = 0$

So

$$b_2$$
: $\Psi = c_1(\mathbf{sH}_a - \mathbf{sH}_b) + c_2 \mathbf{p}_y \mathbf{O}$