Chapter 2. The Schrödinger Equation

Classical waves

$$
\begin{aligned}
& \Psi_{1}(x, t)=A \sin \left[2 \pi\left(\frac{x}{\lambda}-\frac{t}{T}\right)+\phi\right]=A \sin (k x-\omega t+\phi) \\
& \Psi_{2}(x, t)=B \cos (k x-\omega t+\phi) \\
& \Psi_{3}(x, t)=C[\cos (k x-\omega t+\phi)+i \sin (k x-\omega t+\phi)]=C e^{-i(k x-\omega t+\phi)}
\end{aligned}
$$

Wave equation:

$$
\frac{d^{2} \Psi}{d x^{2}}+\frac{4 \pi^{2}}{\lambda^{2}} \Psi=0 \quad \text { (standing wave) }
$$

Recall $\lambda=h / p$ and $p^{2}=2 m[E-V(x)]$, we have

$$
\frac{d^{2} \Psi}{d x^{2}}+\frac{8 \pi^{2} m}{h^{2}}[E-V(x)] \Psi=0
$$

where $V(x)$ is the potential. Rearrange, we have

$$
-\frac{\hbar^{2}}{2 m} \frac{d^{2} \Psi}{d x^{2}}+V(x) \Psi=E \Psi
$$

This is the time-dependent Schrödinger equation, the fundamental equation in quantum mechanics.

Quantum operators

An operator represents a mathematic operation

$$
\hat{O} f(x)=g(x)
$$

Multiplication:

$$
x \rightarrow x \times f(x)
$$

Differentiation:

$$
\frac{d}{d x} \rightarrow \frac{d}{d x} f(x)
$$

In quantum mechanics, each observable corresponds to an operator.

Coordinate operator:

$$
\hat{x} \rightarrow x \times
$$

Linear momentum operator:

$$
\hat{p}_{x} \rightarrow \frac{\hbar}{i} \frac{d}{d x} \quad\left(\hbar=h / 2 \pi=1.055 \times 10^{-34} J s\right)
$$

Kinetic energy operator

$$
\hat{T}_{x}=\frac{\hat{p}_{x}^{2}}{2 m} \rightarrow-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}}
$$

$\underline{\text { Hamiltonian (energy) operator: }}$

$$
\hat{H}=\frac{\hat{p}_{x}^{2}}{2 m}+V(x) \rightarrow-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}}+V(x)
$$

If a function $\psi_{n}(x)$ satisfies the eigenequation

$$
\hat{O} \psi_{n}(x)=o_{n} \psi_{n}(x)
$$

it is called an eigenfunction of the operator \hat{O} with the constant o_{n} as its eigenvalue.

Schrödinger equation is an eigenequation:

$$
\hat{H} \Psi=E \Psi
$$

An operator may have more than one eigenfunction/eigenvalue.
Example:

$$
\frac{d^{2}}{d x^{2}} \sin (k x)=-k^{2} \sin (k x)
$$

So, $\sin (k x)$ is said to be an eigenfunction of the operator $d^{2} / d x^{2}$ with $-k^{2}$ as the eigenvalue.

If the eigenvalues of two eigenfunctions are the same, these two eigenstates are called degenerate (example: $\sin k x$ and $\cos k x$).

Application of a quantum operator to a system corresponds to a measurement. Each measurement yields an observable that is an eigenvalue of the corresponding operator.

The eigenvalues of a quantum operator are always real.
The eigenfunctions of a quantum operator are orthogonal:

$$
\int_{-\infty}^{\infty} \psi_{n}^{*}(x) \psi_{m}(x) d x=0 \quad \text { for } n \neq m
$$

where * is the complex conjugate.
They form a complete set, which means that any function can be expressed as a linear combination of the eigenfunctions:

$$
\Psi(x)=\sum_{n=1}^{\infty} b_{n} \psi_{n}(x)
$$

Fourier sine (and cosine) functions:

$$
\begin{aligned}
& \int \sin (n x) \sin (m x) d x=0 \text { for } n \neq m \\
& \Psi(x)=\sum_{n=1}^{\infty} b_{n} \sin (n x)
\end{aligned}
$$

where the expansion coefficient is

$$
b_{n}=\int \Psi(x) \sin (n x) d x
$$

