## Chapter 5. The Particle in the Box and the Real World

## Real particles in boxes:

Conjugated molecules with alternating single and double bonds
Butadiene: $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}_{2}$
The $\pi$ electrons are delocalized, excitation energy:

$$
\begin{aligned}
& \begin{aligned}
\Delta E_{2 \rightarrow 3} & =\frac{5 h^{2}}{8 m L^{2}}=\frac{5\left(6.626 \times 10^{-34} \mathrm{Js}\right)^{2}}{8\left(9.1 \times 10^{-31} \mathrm{~kg}\right)\left(4.5 \times 10^{-10} \mathrm{~m}\right)^{2}} \\
& =1.5 \times 10^{-18} \mathrm{~J} \\
v=\frac{\Delta E}{h} & =\frac{1.5 \times 10^{-18} \mathrm{~J}}{6.626 \times 10^{34} \mathrm{Js}}=2.2 \times 10^{15} \mathrm{~Hz}
\end{aligned} \\
& \lambda=\frac{c}{v}=\frac{3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}}{2.2 \times 10^{15} \mathrm{~s}^{-1}}=133 \mathrm{~nm}
\end{aligned}
$$

If two more bonds are added,

$$
\lambda=369 \mathrm{~nm}
$$

Change of size increase the wave length of absorption, color change!
Quantum dots $\sim 3 \mathrm{D}$ boxes.

Finite-depth box

$$
\begin{aligned}
V(x) & =0, \quad 0 \leq x \leq L \\
& =V_{0}, \quad x<0, \text { and } x>L
\end{aligned}
$$

Schrodinger equations

$$
\begin{aligned}
& \frac{d^{2} \psi(x)}{d x^{2}}=-\frac{2 m E}{\hbar^{2}} \psi(x) \quad \text { inside the well } \\
& \frac{d^{2} \psi(x)}{d x^{2}}=\frac{2 m\left(V_{0}-E\right)}{\hbar^{2}} \psi(x) \quad \text { outside the well }
\end{aligned}
$$

## Solutions

$$
\begin{array}{ll}
\psi(x)=A e^{i k x}+B e^{-i k x}, & k=\sqrt{2 m E} / \hbar \\
\psi(x)=A^{\prime} e^{\kappa x}+B^{\prime} e^{-\kappa x}, & \kappa=\sqrt{2 m\left(V_{0}-E\right)} / \hbar
\end{array}
$$

By imposing continuity at the boundaries, the solutions become

Probabilities in classically forbidden region.

Tunneling: Due its wave nature, a quantum particle can penetrate a potential barrier and enter into a classically forbidden region (quantum effect).

Scattering of a quantum particle by a square barrier.

An incoming wave is split into transmission and reflection waves. The transmission probability is given

$$
T=\left\{1+\frac{\left(e^{\kappa L}-e^{-\kappa L}\right)^{2}}{16 \varepsilon(1-\varepsilon)}\right\}^{-1}
$$

with

$$
\varepsilon=\frac{E}{V_{0}}, \quad \kappa=\frac{\sqrt{2 m\left(V_{0}-E\right)}}{\hbar}
$$

Tunneling depends on mass ( $\propto e^{-\sqrt{m}}$ ) and barrier width ( $\propto e^{-L}$ ), a smaller mass and narrow barrier aid tunneling.

App: kinetic isotope effects

App: scanning tunneling microscopy (STM)

