Chapter 6. Commuting and Noncommuting Operators

Order of operations might be important in QM!
Two operators commute if the commutator is zero

$$
\left[\hat{\Omega}_{1}, \hat{\Omega}_{2}\right]=\hat{\Omega}_{1} \hat{\Omega}_{2}-\hat{\Omega}_{2} \hat{\Omega}_{1}=0
$$

\hat{p} and \hat{T} commute:

$$
\left[\hat{p}, \frac{\hat{p}^{2}}{2 m}\right] f(x)=\hat{p} \frac{\hat{p}^{2}}{2 m} f(x)-\frac{\hat{p}^{2}}{2 m} \hat{p} f(x)=\left[\frac{\hat{p}^{3}}{2 m}-\frac{\hat{p}^{3}}{2 m}\right] f(x)=0
$$

where f is an arbitrary function.
However, \hat{x} and \hat{p} do not commute:

$$
\begin{aligned}
& \hat{x} \hat{p} f(x)=\frac{\hbar}{i} x \frac{d f(x)}{d x} \\
& \hat{p} \hat{x} f(x)=\frac{\hbar}{i}\left[f(x)+x \frac{d f(x)}{d x}\right] \\
& {[\hat{x}, \hat{p}] f(x)=\frac{\hbar}{i} x \frac{d f(x)}{d x}-\frac{\hbar}{i}\left[x \frac{d f(x)}{d x}+f(x)\right]=i \hbar f(x)} \\
& {[\hat{x}, \hat{p}]=i \hbar \neq 0}
\end{aligned}
$$

Position and momentum are a pair of complementary variables.

$$
\Delta O_{1} \Delta O_{2} \geq \frac{1}{2}\left|\int \Psi^{*}(x)\left[\hat{O}_{1}, \hat{O}_{2}\right] \Psi(x) d x\right|
$$

Indeed

$$
\left.\Delta p \Delta T \geq \frac{1}{2} \int \Psi^{*}(x)[\hat{p}, \hat{H}] \Psi(x) d x \right\rvert\,=0
$$

and

$$
\left.\Delta x \Delta p \geq \frac{1}{2} \int \Psi^{*}(x)[\hat{x}, \hat{p}] \Psi(x) d x \right\rvert\,=\frac{\hbar}{2}
$$

Uncertainty principle (1925, Heisenberg)

The wave-particle duality causes problems in measurement.
This is because if an electron is to be located with uncertainty of Δx, the light used to detect the electron has to have a wavelength that is comparable to Δx, which will lead to a very large momentum according to de Broglie, $p=h / \lambda$. A portion of this large momentum will be transferred to the electron when they interact, causing a large uncertainty in the momentum (Δp) of the electron.

It is impossible to specify simultaneously, with arbitrary precision, both the momentum and position of a particle:

$$
\Delta p \Delta x \geq \hbar / 2
$$

Similarly:

$$
\Delta E \Delta t \geq \hbar / 2
$$

For plane wave $\Psi=A e^{-i k x}$, its momentum is precisely known: $p=k \hbar$. The probability for finding the particle in a particular position is

$$
P(x)=\Psi^{*} \Psi=|A|^{2} e^{i k x} e^{-i k x}=|A|^{2}
$$

Since it is independent of x, the probability is equal everywhere, position completely uncertain!

In particle in a box,

$$
\begin{aligned}
& \Delta x=L \\
& \Delta p=\frac{\hbar}{2 \Delta x}=\frac{\hbar}{2 L} \\
& \frac{(\Delta p)^{2}}{2 m}=\frac{\hbar^{2}}{8 m L^{2}} \propto E_{1}
\end{aligned}
$$

ZPE, a quantum effect, is due to restriction of motion.
Example: Calc. the position uncertainty of a 1.0 kg particle with a speed uncertainty of $10^{-6} \mathrm{~m} / \mathrm{s}$. What if the mass is $1.0 \times 10^{-31} \mathrm{~kg}$?

$$
\begin{aligned}
\Delta x & =\hbar /(2 \Delta p)=\hbar /(2 \mathrm{~m} \Delta v) \\
& =1.05 \times 10^{-34} \mathrm{~J} /\left(\left(2 \times 1.0 \mathrm{~kg} \times 1.0 \times 10^{-6} \mathrm{~m} / \mathrm{s}\right)\right. \\
& =5.25 \times 10^{-29} \mathrm{~m}
\end{aligned}
$$

However, for a particle with the electronic size

$$
\Delta x=525 \mathrm{~m}
$$

