HW 1 (Chapter 13):
Tutorial Questions: Free Particle Wave Equation, Linearity of the Schrödinger Equation
Online Questions: 13.3, 13.4, 13.6, 13.12, 13.17, 13.18
HW 2 (Chapter 14)
Online Questions: 14.1, 14.4, 14.6, 14.9, 14.14
HW 3 (Chapter 15)
Tutorial Questions: Particle in a Box, Finding Probabilities from the Wave Function, Vision and the Particle in a Box
Online Questions: 15.9, 15.12, 15.15, 15.20, 15.22, 15.34
HW 4 (Chapter 16)
Tutorial Questions: Band Gaps
Online Questions: 15.17, 16.4, 16.8
HW 5 (Chapter 17)
Tutorial Questions: Heisenberg's Uncertainty Principle
Online Questions: 17.10, 17.12, 17.23
Book Questions: P6.3, P6.4, P6.5, P6.7, P6.20

HW 6 (Chapter 18)
Tutorial Questions: Applying the Harmonic Oscillator, Rules for Orbital Angular Momentum, Vibrating Hydrogen Molecule
Online Questions: 18.1, 18.518 .8 18.9, 18.16, 18.23, 18.37
Book Questions: P7.2, P7.4, P7.7, P7.10

HW 7 (Chapter 19)
Tutorial Questions: Electromagnetic Radiation, Basics of Molecular Spectroscopy Online Questions: 19.1, 19.2, 19.7, 19.9, 19.14, 19.21, 19.23, 19.42
Book Questions: P8.29

HW 8 (Chapter 20)
Tutorial Questions: Average Position of an electron in a Hydrogen Atom, Normalizing the Hydrogen Wave Function, s and p Orbitals of a Hydrogen Atom, Schrödinger Equation and Wave Functions
Online Questions: 20.1, 20.4, 20.9, 20.31
Book Questions: P9.2, P9.5
HW 9 (Chapter 21)
Tutorial Questions: Quantum numbers and Electron Identification, Quantum Number Rules, Orbital Diagrams, Electronic Configurations of Atoms and Ions, Atomic Radii and Effective Nuclear Charge.
Online Questions: 21.1, 21.2, 21.10
Book Question: P10.5
HW 10 (Chapter 22)
Tutorial Questions: Electron Configurations, Electron States, Selection Rules Online Questions: 22.2, 22.3, 22.6, 22.16, 22.24, 22.38
Book Question: P11.13

HW 11 (Chapter 23)
Tutorial Questions: Molecular Orbital Diagrams and Bond Order, Molecular Orbitals
Online Questions: 23.11, 23.12, 23.14, 23.21, 23.24
Book question: 12.6
Additional question: Draw the molecular orbital energy level diagram for the following molecules: $\mathrm{O}_{2}, \mathrm{O}_{2}{ }^{2-}, \mathrm{N}_{2}, \mathrm{~N}_{2}{ }^{+}, \mathrm{CO}, \mathrm{CO}^{-}, \mathrm{CO}^{+}$. Determine the electronic configuration, identify the HOMO and LUMO, compute the bond order and the total spin multiplicity.

HW 12 (Chapter 24)
Tutorial Questions: Molecular Geometry, Molecular Shapes and Bond Angles, Bonding in the Benzene Molecule
Online Questions: 24.11, 24.15, 24.19, 24.24, 24.30
Book questions: 13.2, 13.9, 13.23
Additional Questions:

1) The ionization energy of Xe5p and 02p electrons are 12.1 eV and 13.6 eV , respectively. Calculate the energies and AO coefficients of the bonding and anti bonding orbitals of XeO . Use $\beta=-1.2 \mathrm{eV}$ and $\mathrm{S}=0$

HW 13 (Chapter 25 and 27)
Tutorial Questions: Wintergreen Mints: A Case of Triboluminescence Online Questions: 25.1, 25.2, 25.4

Online Questions: 27.4, 27.13, 27.15, 27.21, 27.22
Book Questions: 16.9, 16.25

