Chapter 2. Foundations of quantum mechanics

I. Basics

Each observable corresponds in quantum mechanics to an operator, which represents a mathematical operation.

Examples:

$$
\begin{aligned}
& \hat{q} \rightarrow \hat{q} f(q)=q \times f(q) \\
& \frac{d}{d q} \rightarrow \frac{d}{d q} f(q)=\frac{d f(q)}{d q}
\end{aligned}
$$

Some important operators in the coordinate representation:
Coordinate operator:

$$
\hat{q} \rightarrow q \times
$$

Linear momentum operator:

$$
\hat{P}_{q} \rightarrow \frac{\hbar}{i} \frac{d}{d q} \quad\left(\hbar=h / 2 \pi=1.055 \times 10^{-34} \mathrm{Js}\right)
$$

Hamiltonian (energy) operator:

$$
\hat{H}=\frac{\hat{p}_{q}^{2}}{2 m}+V(q) \rightarrow-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d q^{2}}+V(q)
$$

The form of an operator depends on the representation. For example, the coordinate and momentum operators in the momentum representation become:

$$
\hat{q} \rightarrow \frac{\hbar}{i} \frac{d}{d p_{q}}, \quad \hat{p}_{q} \rightarrow p_{q} \times
$$

Later, we will see that transformations exist between different representations.

Two operators commute if

$$
\left[\hat{\Omega}_{1}, \hat{\Omega}_{2}\right]=\hat{\Omega}_{1} \hat{\Omega}_{2}-\hat{\Omega}_{2} \hat{\Omega}_{1}=0
$$

For example, \hat{q} and \hat{p}_{q} do not commute:

$$
\begin{aligned}
& \hat{q} \hat{p}_{q} f(q)=\frac{\hbar}{i} q \frac{d f(q)}{d q} \quad(f(q) \text { is an arbitrary function) } \\
& \hat{p}_{q} \hat{q} f(q)=\frac{\hbar}{i}\left[q \frac{d f(q)}{d q}+f(q)\right]
\end{aligned}
$$

SO

$$
\begin{aligned}
& {\left[\hat{q}, \hat{p}_{q}\right] f(q)=\frac{\hbar}{i} q \frac{d f(q)}{d q}-\frac{\hbar}{i}\left[q \frac{d f(q)}{d q}+f(q)\right]=i \hbar f(q)} \\
& {\left[\hat{q}, \hat{p}_{q}\right]=i \hbar \neq 0}
\end{aligned}
$$

If a function $\phi(q)$ that satisfies the following eigenequation

$$
\hat{\Omega} \phi(q)=\omega \phi(q)
$$

it is called an eigenfunction of the operator $\hat{\Omega}$ with the constant ω as its eigenvalue.

Example:

$$
\frac{d^{2}}{d q^{2}} \sin (k q)=-k^{2} \sin (k q)
$$

So, $\sin (k q)$ is said to be an eigenfunction of the operator $d^{2} / d q^{2}$ with $-k^{2}$ as the eigenvalue.

If the eigenvalues of two eigenfunctions are the same, these two eigenstates are called degenerate (example: $\sin k q$ and $\cos k q$).

In quantum mechanics, we only deal with Hermitian operators.

$$
\int \varphi^{*}(\hat{\Omega} \psi) d \tau=\left[\varsigma \psi^{*}(\hat{\Omega} \varphi) d \tau\right]^{*}=\int \psi(\hat{\Omega} \varphi)^{*} d \tau
$$

Example, \hat{p} is Hermitian

$$
\begin{aligned}
\int \varphi^{*}\left(-i \hbar \frac{d}{d q}\right) \psi d q & \left.=-i \hbar \int \varphi^{*} d \psi=-i \hbar\left[\varphi^{*} \psi \left\lvert\, \begin{array}{c}
q=\infty \\
q=-\infty \\
\hline
\end{array}\right.\right) \int \psi d \varphi^{*}\right] \\
& =\int \psi\left(i \hbar \frac{d}{d q}\right) \varphi^{*} d q=\left[\int \psi^{*}\left(-i \hbar \frac{d}{d q}\right) \varphi d q\right]^{*}
\end{aligned}
$$

i. Eigenvalues of Hermitian operators are always real.
ii. Eigenfunctions of a Hermitian operator are orthogonal:

$$
\int \psi_{n}^{*} \psi_{m} d \tau=0 \text { if } n \neq m
$$

and can be normalized

$$
\int \psi_{n}^{*} \psi_{n} d \tau=\int\left|\psi_{n}\right|^{2} d \tau=1
$$

Combining the two, the eigenfunctions are orthonormal:

$$
\int \psi_{n}^{*} \psi_{m} d \tau=\delta_{n m}
$$

where $\delta_{n m}(=0$ if $n \neq m$ and 1 if $n=m)$ is the Kronecker delta.
iii. Eigenfunctions of a Hermitian operator form a complete set, namely, an arbitrary wavefunction can be expressed as a linear combination of the eigenfunctions:

$$
\Psi=\sum_{n} c_{n} \psi_{n}
$$

with $\hat{\Omega} \psi_{n}=\omega_{n} \psi_{n}$. The expansion coefficients, c_{n}, determines the chance of the system to be in a particular eigenstate (the superposition principle).

II. The postulates of quantum mechanics

Quantum mechanics can be established from a small number of postulates. They cannot be derived or proven. Their validity is established by the confirmation of their predictions.

Postulate I: The state of a bound quantum system is completely described by a wavefunction $\Psi(\mathbf{q}, t)$, where $\left\{\mathbf{q}=q_{1}, q_{2}, \ldots\right\}$ are the (spatial + spin) coordinates of the particles in the system. All observables are determined by $\Psi(\mathbf{q}, t)$.

Example: ground state wave function of a 1D harmonic oscillator: $\Psi_{0}(q)=N e^{-\alpha q^{2}}$

Postulate II: Every observable corresponds to a Hermitian operator. In the coordinate representation, such an operator can be constructed by expressing

$$
\hat{q} \rightarrow q \times, \hat{p}_{q} \rightarrow \frac{\hbar}{i} \frac{\partial}{\partial q}
$$

Example: angular momentum operator:

$$
\hat{l}_{x}=\hat{y} \hat{p}_{z}-\hat{z} \hat{p}_{y}=-i \hbar\left(y \frac{\partial}{\partial z}-z \frac{\partial}{\partial y}\right)
$$

Postulate III (Born's interpretation): The probability for finding the system in the volume element $d \tau$ at point \mathbf{q} is proportional to $|\Psi(\mathbf{q})|^{2} d \tau$.

The probability density $|\Psi(\mathbf{q})|^{2}$ is always real and non-negative, although the probability amplitude $\Psi(\mathbf{q})$ can be complex.

The statistical interpretation of the wavefunction requires that it be single valued, continuous, and square-integratable:

$$
\int|\Psi|^{2} d \tau<\infty
$$

In fact, wavefunction can be normalized such that $\int|\Psi|^{2} d \tau=1$.
Example. The wavefunction of H atom is $\Psi=e^{-r / a_{0}}$ where $a_{0}=52.9 \mathrm{pm}$. Calculate the probability to find the electron inside a small box of $1.0 \mathrm{pm}^{3}$ at $r=0$ and $r=a_{0}$.

Normalization:

$$
\begin{aligned}
C & =\int|\Psi|^{2} d \tau=\int_{0}^{\infty} e^{-2 r / a_{0}} r^{2} d r \int_{0}^{\pi} \sin \theta d \theta \int_{0}^{2 \pi} d \phi \\
& =\frac{a_{0}^{3}}{4} 4 \pi=\pi a_{0}^{3}
\end{aligned}
$$

where we have used spherical coordinates:

$$
\begin{aligned}
& x=r \sin \theta \cos \phi, \quad y=r \sin \theta \sin \phi, \quad z=r \cos \theta \\
& d \tau=d x d y d z=r^{2} \sin \theta d r d \theta d \phi
\end{aligned}
$$

and

$$
\int_{0}^{\infty} e^{-a x} x^{n} d x=\frac{n!}{a^{n+1}}
$$

The normalized wavefunction:

$$
\Psi=\left(\frac{1}{\pi a_{0}^{3}}\right)^{1 / 2} e^{-r / a_{0}}, \text { and } \quad|\Psi|^{2}=\left(\frac{1}{\pi a_{0}^{3}}\right) e^{-2 r / a_{0}}
$$

The probability at $r=0$:

$$
P=|\Psi|^{2} d \tau=\left(2.15 \times 10^{-6} \mathrm{pm}^{-3}\right) \times\left(1.0 \mathrm{pm}^{3}\right)=2.15 \times 10^{-6}
$$

and at $r=a_{0}$:

$$
P^{\prime}=\left(2.15 \times 10^{-6} p^{-3} e^{-2}\right) \times\left(1.0{p m^{3}}^{3}\right)=2.91 \times 10^{-7}
$$

Postulate IV (Schrödinger equation): The wavefunction evolves in time according to the equation:

$$
i \hbar \frac{\partial \Psi}{\partial t}=\hat{H} \Psi
$$

For time-independent Hamiltonian, the time-dependent Schrödinger equation (TDSE) can be reduced to a timeindependent form:

$$
\Psi(\mathbf{q}, t)=\psi(\mathbf{q}) \varphi(t)
$$

The TDSE becomes:

$$
i \hbar \psi(\mathbf{q}) \frac{\partial \varphi(t)}{\partial t}=\varphi(t) \hat{H} \psi(\mathbf{q})
$$

Divide both sides by Ψ, we have

$$
i \hbar \varphi(t)^{-1} \frac{\partial \varphi(t)}{\partial t}=\psi(\mathbf{q})^{-1} \hat{H} \psi(\mathbf{q})
$$

Since two sides depend on different variables, they have to be constant (E). Hence, the equation can be separated into two:

$$
i \hbar \frac{\partial \varphi(t)}{\partial t}=E \varphi(t), \quad \hat{H} \psi(\mathbf{q})=E \psi(\mathbf{q})
$$

The first has a solution: $\varphi(t) \propto e^{-i E t / \hbar}$, and the second one is called the time-independent Schrödinger equation (TISE).

Notice that the norm of both Ψ and ψ is the same because:

$$
\Psi^{*} \Psi=\left(\psi^{*} e^{i E t / \hbar}\right)\left(\psi e^{-i E t / \hbar}\right)=\psi^{*} \psi
$$

They are called stationary states and $e^{-i E t / \hbar}$ is the phase.

Postulate V: If a system is described by the wavefunction Ψ, the mean value of the observable Ω in a series measurements is given by the expectation value of the corresponding operator:

$$
\langle\hat{\Omega}\rangle=\frac{\int \Psi^{*} \hat{\Omega} \Psi d \tau}{\int \Psi^{*} \Psi d \tau}
$$

where the wavefunction can always be normalized $\int \Psi^{*} \Psi d \tau=1$.
If Ψ is an eigenfunction of $\hat{\Omega}$ ($\hat{\Omega} \Psi=\omega \Psi$), each measurement yields the same eigenvalue ω and $\langle\hat{\Omega}\rangle=\omega$.

If Ψ is not an eigenfunction, it can always be expressed as a linear combination of the eigenfunctions:

$$
\Psi=\sum_{n} c_{n} \psi_{n} \quad \text { (with } \hat{\Omega} \psi_{n}=\omega_{n} \psi_{n} \text {) }
$$

so,

$$
\begin{aligned}
& \langle\hat{\Omega}\rangle=\int\left(\sum_{n} c_{n} \psi_{n}\right)^{*} \hat{\Omega}\left(\sum_{m} c_{m} \psi_{m}\right) d \tau \\
& =\int\left(\sum_{n} c_{n} \psi_{n}\right)^{*}\left(\sum_{m} c_{m} \omega_{m} \psi_{m}\right) d \tau \\
& =\sum_{n} \sum_{m} c_{n}^{*} c_{m} \omega_{m} \delta_{n m}=\sum_{n}\left|c_{n}\right|^{2} \omega_{n}
\end{aligned}
$$

Each measurement always yields one of the eigenvalues, the chance for a particular eigenvalue (ω_{n}) to appear in a measurement is given by $\left|c_{n}\right|^{2}$.

Measurement	\Leftrightarrow	Operation
Measuring equipment	\Leftrightarrow	Operator
Observable	\Leftrightarrow	Eigenvalue
State of the system	\Leftrightarrow	Wavefunction

III. Bra and ket notation

It is often more convenient to express wavefunctions in bra and ket notation.
bra: $\langle\varphi|=\varphi^{*}$,
ket: $|\psi\rangle=\psi$,
transpose: $[\langle\varphi|]^{T}=|\varphi\rangle$
overlap: $\langle\varphi \mid \psi\rangle=\int \varphi^{*} \psi d \tau, \quad\langle\varphi \mid \psi\rangle=\langle\psi \mid \phi\rangle^{*}$
density: $\quad \varphi^{*} \psi=|\psi\rangle\langle\varphi|$
integral with operator: $\langle\varphi| \hat{\Omega}|\psi\rangle=\int \varphi^{*} \hat{\Omega} \psi d \tau$
Eigenequation: $\quad \hat{\Omega}\left|\phi_{n}\right\rangle=\omega_{n}\left|\phi_{n}\right\rangle$
Orthonormality: $\quad\left\langle\psi_{n} \mid \psi_{m}\right\rangle=\delta_{n m}$
Expectation value: $\langle\hat{\Omega}\rangle=\frac{\langle\psi| \hat{\Omega}|\psi\rangle}{\langle\psi \mid \psi\rangle}$
Linear combination:

$$
|\Psi\rangle=\sum_{n} c_{n}\left|\psi_{n}\right\rangle
$$

IV. Heisenberg's uncertainty principle

If two operators commute:

$$
\left[\hat{\Omega}_{1}, \hat{\Omega}_{2}\right]=0
$$

one can always find simultaneous eigenfunctions for both operators. This means that the corresponding observables can be simultaneously measured with arbitrary accuracy.

Example, 1D free particle ($V=0$)

$$
-\frac{\hbar^{2}}{2 m} \frac{d^{2} \Psi}{d q^{2}}=E \Psi, \quad \text { or } \quad \frac{d^{2} \Psi}{d q^{2}}=-\frac{2 m E}{\hbar^{2}} \Psi
$$

\hat{p}_{q} and \hat{H} commute for a free particle:

$$
\left[\hat{p}_{q}, \frac{\hat{p}_{q}^{2}}{2 m}\right]=0
$$

So common eigenfunctions can be found and they can be measured simultaneously and accurately!

Solution of Schrödinger equation:

$$
\Psi(q)=\exp (\pm i k q)=\cos k q \pm i \sin k q, \quad \text { (plane wave) }
$$

where the wave vector is $k=(2 m E)^{1 / 2} / \hbar$.

Action of momentum and Hamiltonian:

$$
\begin{aligned}
& \hat{p}_{q} \Psi=\frac{\hbar}{i} \frac{d}{d q}\left(e^{i k q}\right)=\frac{\hbar}{i}(i k) e^{i k q}=\hbar k e^{i k q}=\hbar k \Psi \\
& \hat{H} \Psi=-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d q^{2}}\left(e^{i k q}\right)=-\frac{\hbar^{2}}{2 m}(i k)^{2} e^{i k q}=\frac{\hbar^{2} k^{2}}{2 m} \Psi
\end{aligned}
$$

Ψ is eigenfunction of both \hat{p}_{q} and \hat{H}, the eigenvalues are

$$
p_{q}=\hbar k, \quad E=\frac{\hbar^{2} k^{2}}{2 m}
$$

de Broglie's relation:

$$
p=k \hbar=\frac{2 \pi}{\lambda} \frac{h}{2 \pi}=\frac{h}{\lambda} \quad\left(\lambda=\frac{2 \pi}{k}\right)
$$

It is impossible to specify simultaneously, with arbitrary precision, both the momentum and position of a particle, because $[\hat{q}, \hat{p}]=i \hbar$. The constraint

$$
\Delta p \Delta q \geq \hbar / 2
$$

is Heisenberg's uncertainty principle, and p and q are complementary observables.

Time and energy is another pair of complementary observables:
$\Delta E \Delta t \geq \hbar / 2$

Example: Calc. the position uncertainty of a 1.0 kg particle with a speed uncertainty of $10^{-6} \mathrm{~m} / \mathrm{s}$. What if the mass is 1.0×10^{-31} kg?

$$
\begin{aligned}
\Delta q & =\hbar /(2 \Delta p)=\hbar /(2 \mathrm{~m} \Delta v) \\
& =1.05 \times 10^{-34} \mathrm{Js} /\left(2 \times 1.0 \mathrm{~kg} \times 1.0 \times 10^{-6} \mathrm{~m} / \mathrm{s}\right) \\
& =5.25 \times 10^{-29} \mathrm{~m}
\end{aligned}
$$

However, for a particle with the electronic size

$$
\Delta q=525 \mathrm{~m}
$$

Classical - quantum correspondence:

Classical Quantum

State	$q+p$	$\Psi(q)$
Eq. of motion	Newton	Schrödinger
Wave nature	no	yes
Interference	no	yes
Uncertainty	no	yes
Energy	arbitrary	often quantized
Applicability	$1 \mathrm{~m}, 1 \mathrm{~kg}$	$1 \mathrm{pm}, 10^{-25} \mathrm{~kg}$

