Chapter 2. Foundations of quantum mechanics

|. Basics

Each observable corresponds in quantum mechanics to an
operator, which represents a mathematical operation.

Examples:
4—af(q) =qxf(q)

d d df (q)
s ()= 2\
dq ~ dq @ dq

Some important operators in the coordinate representation:

Coordinate operator:

q—qx

Linear momentum operator:

P, > (7=h/27=1.055x10"*Js)

Hamiltonian (energy) operator:
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The form of an operator depends on the representation. For
example, the coordinate and momentum operators in the

momentum representation become:

. _hd A
q—>=-"— pq_>pq><

Later, we will see that transformations exist between different
representations.

Two operators commute if
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If a function ¢(q) that satisfies the following eigenequation

Q4(0) = 04(q),

it is called an eigenfunction of the operator Q with the constant
@ as Its eigenvalue.

Example:

2

d—zsin(kq) = —k?sin(kq)

da

So, sin(kq) is said to be an eigenfunction of the operator
d?/dg?® with —k? as the eigenvalue.

If the eigenvalues of two eigenfunctions are the same, these two
eigenstates are called degenerate (example: sinkq and coskq).

In quantum mechanics, we only deal with Hermitian operators.

o (Qu)dr =[iy (Qp)dz] =iy (Qgp) dr

Example, p is Hermitian

J 40*(— ih;—q}/qu =—ihfp dy = —ih[co*l/f\qiooo - wdco*]
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I.  Eigenvalues of Hermitian operators are always real.

il.  Eigenfunctions of a Hermitian operator are orthogonal:
[y, dr=0 ifnzm

and can be normalized

Twawadz = Jlw, [ dz =1

Combining the two, the eigenfunctions are orthonormal:

.[';”:Wmd U= 5nm

where J,,,(=0if n= mandlif n=m) is the Kronecker
delta.

ii.  Eigenfunctions of a Hermitian operator form a complete
set, namely, an arbitrary wavefunction can be expressed
as a linear combination of the eigenfunctions:

Y=2cw,
n

with Qw, = w.w,,. The expansion coefficients, c,,

determines the chance of the system to be in a particular
eigenstate (the superposition principle).




I1. The postulates of quantum mechanics

Quantum mechanics can be established from a small
number of postulates. They cannot be derived or proven. Their
validity is established by the confirmation of their predictions.

Postulate I: The state of a bound quantum system is completely
described by a wavefunction ‘¥'(q,t), where {g=q,,q,,... } are

the (spatial + spin) coordinates of the particles in the system. All
observables are determined by ¥(q,t).

Example: ground state wave function of a 1D harmonic
oscillator: ¥, (q) = Ne™

Postulate 11: Every observable corresponds to a Hermitian
operator. In the coordinate representation, such an operator can
be constructed by expressing

4%, >0 O
R N Wl

Example: angular momentum operator:
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Postulate 111 (Born’s interpretation): The probability for
finding the system in the volume element dz at point q is

proportional to \‘P(q)\zdr.

The probability density \‘P(q)\2 Is always real and non-negative,
although the probability amplitude W¥(q) can be complex.

The statistical interpretation of the wavefunction requires that it
be single valued, continuous, and square-integratable:

H\P‘de < o0

In fact, wavefunction can be normalized such that [[¥|*dz =1.

Example. The wavefunction of H atom is ¥ ="'

where a, = 52.9 pm. Calculate the probability to find the
electron inside a small box of 1.0 pm*atr=0and r = a,.

Normalization;

_ 2 _OO—Zr/aO 2 2z
C=[¥|ldr=]Je rdr{sin@d@ [d¢
0 0

0
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where we have used spherical coordinates:



X = rsincos¢g, y = rsinésing,  z = rcosé

dr = dxdydz = résinddrd@dg

and

o0 |

[e™™x"dx = v

n+1

0 a

The normalized wavefunction:

1/2
T:(igj e—r/ao’and |T|2:(i3je—2rlao

70
The probability at r = 0:
P = W[°dr = (215x10° pm?)x (10 pm®) = 215x10°
and atr = a,;
P' = (215x10°® pm2e?)x (L0 pm®) = 291x10~

Postulate 1V (Schrodinger equation): The wavefunction
evolves in time according to the equation:




For time-independent Hamiltonian, the time-dependent
Schrddinger equation (TDSE) can be reduced to a time-
independent form:

Y(a,t) =w(q)e(t)
The TDSE becomes:
(@ 20 = o) i (@)

Divide both sides by ¥, we have

ihco(t)‘lag—ft) —u (@) ()

Since two sides depend on different variables, they have to be
constant (E). Hence, the equation can be separated into two:

=Ep(t), Hy(a)=Ey(a),

ihawﬁ)
ot

The first has a solution: ¢(t) «c 57 and the second one is

called the time-independent Schrodinger equation (TISE).

Notice that the norm of both ¥ and y is the same because:

\P*\P _ (W*eiEt/h)(lﬂe_iEt/h) _ W*l//

—iEt/h

They are called stationary states and e IS the phase.
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Postulate V: If a system is described by the wavefunction ¥,
the mean value of the observable Q in a series measurements is
given by the expectation value of the corresponding operator:

@) - [P QWdr
C[¥Ywdr

where the wavefunction can always be normalized [¥ Wdz=1.

If ¥ is an eigenfunction of Q (QW = @¥ ), each measurement
yields the same eigenvalue » and <Q> =w.

If W is not an eigenfunction, it can always be expressed as a
linear combination of the eigenfunctions:

V=2 cw, (with QWn = a)nl//n)
n

SO,

<fl> = j(% C\W/p )*SA!(% Colm )d T

= I(zCanj (zcma)me jdz— (J.l//:l//mdz- — 5nm)

x 2
= chncmwm5nm - Z‘Cn‘ @,
nm n

Each measurement always yields one of the eigenvalues, the
chance for a particular eigenvalue (@, ) to appear in a

. . 2
measurement is given by |c,|".
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Summary

Quantum mechanics Mathematics
Measurement o Operation
Measuring equipment < Operator
Observable & Eigenvalue
State of the system = Wavefunction

I11. Bra and ket notation

It is often more convenient to express wavefunctions in bra and
ket notation.

bra: (p|=¢,

ket: |y)=y ,

transpose: [<¢\]T =|p)

overlap: (p|y)=[pydz, (o|y)=(y|¢)
density: (p*w=\w><€0\

integral with operator: <go‘f2‘w> =@ Qudr
Eigenequation: Q¢ ) = @,|4,)
Orthonormality:  (w, [ )= Spm

Expectation value: <ﬁ> - <Z/§VQW(/§>

Linear combination:  |¥)=3c,|y,)
n
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V. Heisenberg’s uncertainty principle

If two operators commute:

[91’ Qz] =0
one can always find simultaneous eigenfunctions for both
operators. This means that the corresponding observables can be
simultaneously measured with arbitrary accuracy.

Example, 1D free particle (V =0)

R B 2 d’¥  2mE
2m dg? =YL or T

dg®>  #?

p, and H commute for a free particle:

.
g

So common eigenfunctions can be found and they can be
measured simultaneously and accurately!

Solution of Schrodinger equation:

Y (q) = exp(xikq) = coskq £ isinkq, (plane wave)

where the wave vector is k = ( 2mE)1/2/h.
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Action of momentum and Hamiltonian:

b, ——( e'kd) = Z(ik)e‘kq — hke™ = AkY
I dq |
1 n® d? ik h* h2k?
HY = —— ' q elkq LN\ 7
2m dg? (€)= m( ) 2m

V' is eigenfunction of both p, and H , the eigenvalues are

hok*
— E =
Py = 7K, om
de Broglie’s relation:
27 h h
P A2r A ( )

It is impossible to specify simultaneously, with arbitrary
precision, both the momentum and position of a particle,
because [§, p] = i%. The constraint

Ap AQ > #l?2

Is Heisenberg’s uncertainty principle, and p and g are
complementary observables.

Time and energy is another pair of complementary observables:

AE At>1/2
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Example: Calc. the position uncertainty of a 1.0 kg particle with
a speed uncertainty of 106 m/s. What if the mass is 1.0x10-31
kg?

Aq = Al (2Ap) = Al (2mAv)
= 105x1073*Js/(2x1.0 kg x10x10™° m/s)
= 525x10° m

However, for a particle with the electronic size

AgQ =525m

Classical - guantum correspondence:

Classical Quantum
State q+p Y(q)
Eq. of motion Newton Schrédinger
Wave nature no yes
Interference no yes
Uncertainty no yes
Energy arbitrary often quantized

Applicability 1m, 1Kkg 1pm, 10" kg
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