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Chapter 2. Foundations of quantum mechanics 
 
I. Basics 
 
Each observable corresponds in quantum mechanics to an 
operator, which represents a mathematical operation.  
 
Examples: 
 
 )()(ˆˆ qfqqfqq ×=→  
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Some important operators in the coordinate representation: 
 
Coordinate operator: 
 
 ×→ qq̂  
 
Linear momentum operator: 
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The form of an operator depends on the representation. For 
example, the coordinate and momentum operators in the 
momentum representation become: 
 

qdp
d

i
q h
→ˆ ,  ×→ qq pp̂  

 
Later, we will see that transformations exist between different 
representations. 
 
Two operators commute if 
 
 0ˆˆˆˆ]ˆ,ˆ[ 122121 =ΩΩ−ΩΩ=ΩΩ  
 
For example, q̂  and qp̂  do not commute: 
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If a function )(qφ  that satisfies the following eigenequation 
 
 )()(ˆ qq ωφφ =Ω ,  
 
it is called an eigenfunction of the operator Ω̂  with the constant 
ω  as its eigenvalue. 
 
Example: 
 

 )sin()sin( 2
2

2
kqkkq

dq
d

−=  

 
So, )sin(kq  is said to be an eigenfunction of the operator 

22 dqd  with 2k−  as the eigenvalue.  
 
If the eigenvalues of two eigenfunctions are the same, these two 
eigenstates are called degenerate (example: kqsin  and kqcos ). 
 
In quantum mechanics, we only deal with Hermitian operators.  
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Example,  p̂  is Hermitian 
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i. Eigenvalues of Hermitian operators are always real. 
 
ii. Eigenfunctions of a Hermitian operator are orthogonal:  

 
  0* =∫ τψψ dmn  if mn ≠   

 
 and can be normalized 

 
  12* =∫=∫ τψτψψ dd nnn  
 

Combining the two, the eigenfunctions are orthonormal: 
 
  nmmn d δτψψ =∫ *  
 

where ) if 1 and  if 0( mnmnnm =≠=δ  is the Kronecker 
delta. 

 
iii. Eigenfunctions of a Hermitian operator form a complete 

set, namely, an arbitrary wavefunction can be expressed 
as a linear combination of the eigenfunctions: 

 
  ∑=Ψ

n
nnc ψ  

with nnn ψωψ =Ω̂ .  The expansion coefficients, nc , 
determines the chance of the system to be in a particular 
eigenstate (the superposition principle). 
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II. The postulates of quantum mechanics 
 
 Quantum mechanics can be established from a small 
number of postulates. They cannot be derived or proven. Their 
validity is established by the confirmation of their predictions. 
 
Postulate I: The state of a bound quantum system is completely 
described by a wavefunction ),( tqΨ , where {q= ,..., 21 qq } are 
the (spatial + spin) coordinates of the particles in the system. All 
observables are determined by ),( tqΨ . 
 
Example: ground state wave function of a 1D harmonic 
oscillator: 

2

)(0
qNeq α−=Ψ  

 
 
 
 
 
Postulate II: Every observable corresponds to a Hermitian 
operator. In the coordinate representation, such an operator can 
be constructed by expressing  
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qi
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∂
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Example: angular momentum operator: 
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Postulate III (Born’s interpretation): The probability for 
finding the system in the volume element τd  at point q  is 
proportional to τd2)(qΨ . 
 
The probability density 2)(qΨ  is always real and non-negative, 
although the probability amplitude )(qΨ  can be complex. 
 
The statistical interpretation of the wavefunction requires that it 
be single valued, continuous, and square-integratable: 
 
 ∞<∫ Ψ τd2  
 
In fact, wavefunction can be normalized such that 12 =∫ Ψ τd . 
 
Example. The wavefunction of H atom is 0/ are−=Ψ  
where a0 = 52.9 pm. Calculate the probability to find the 
electron inside a small box of 1.0 pm3 at r = 0 and r = a0. 
 
Normalization: 
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where we have used spherical coordinates: 
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 φθcossin rx = , φθsinsinry = , cosθ rz =   
 φθθτ  ddrd r dx dy dz  d sin2==  
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The normalized wavefunction: 
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The probability at r = 0: 
 
 63362 10152)01()10152( --- .   pm.pm.  d P  ×=××=Ψ= τ  

 
and at r = a0: 
 
 73236 10912)01()10152( -- - - .   pm.epm. P' ×=××=  

 
Postulate IV (Schrödinger equation): The wavefunction 
evolves in time according to the equation: 
 

 Ψ=
∂
Ψ∂ H
t

i ˆh  
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For time-independent Hamiltonian, the time-dependent 
Schrödinger equation (TDSE) can be reduced to a time-
independent form: 
 
 )()(),( tt ϕψ qq =Ψ  
 
The TDSE becomes: 
 

 )(ˆ)()()( qq ψϕϕψ Ht
t
ti =

∂
∂

h  

 
Divide both sides by Ψ , we have 
 

 )(ˆ)()()( 11 qq ψψϕϕ H
t
tti −− =

∂
∂

h  

 
Since two sides depend on different variables, they have to be 
constant (E). Hence, the equation can be separated into two: 
 

 )()( tE
t
ti ϕϕ
=

∂
∂

h ,  )()(ˆ qq ψψ EH = , 

 
The first has a solution: h/)( iEtet −∝ϕ , and the second one is 
called the time-independent Schrödinger equation (TISE). 
 
Notice that the norm of both Ψ  and ψ  is the same because: 
 
 ψψψψ *//** ))(( ==ΨΨ − hh iEtiEt ee  
 
They are called stationary states and h/iEte−  is the phase. 
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Postulate V: If a system is described by the wavefunction Ψ , 
the mean value of the observable Ω  in a series measurements is 
given by the expectation value of the corresponding operator: 
 

 
∫ ΨΨ
∫ ΨΩΨ

=Ω
τ
τ

d
d

*

* ˆˆ  

 
where the wavefunction can always be normalized ∫ ΨΨ τd* =1. 
 
If Ψ  is an eigenfunction of Ω̂  ( Ψ=ΨΩ ωˆ ), each measurement 
yields the same eigenvalue ω  and ω=Ω̂ . 
 
If Ψ  is not an eigenfunction, it can always be expressed as a 
linear combination of the eigenfunctions: 
 
 ∑=Ψ

n
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so, 

 

∑=∑∑=

∫ ⎟
⎠
⎞

⎜
⎝
⎛∑⎟

⎠
⎞

⎜
⎝
⎛∑=

∫ ⎟
⎠
⎞

⎜
⎝
⎛∑Ω⎟

⎠
⎞

⎜
⎝
⎛∑=Ω

n
nn

n m
nmmmn

m
mmm

n
nn

m
mm

n
nn

ccc

dcc

dcc

ωδω

τψωψ

τψψ

2*

*

*
ˆˆ

  ( nmmn d δτψψ =∫ * ) 

 
Each measurement always yields one of the eigenvalues, the 
chance for a particular eigenvalue ( nω ) to appear in a 
measurement is given by 2

nc . 
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     Summary 
 _____________________________________________________________________________ 
 

 Quantum mechanics   Mathematics 
 _____________________________________________________________________________ 

 Measurement    ⇔   Operation 
 Measuring equipment  ⇔   Operator 
 Observable   ⇔   Eigenvalue 
 State of the system  ⇔   Wavefunction 
 _____________________________________________________________________________ 
 

 
III. Bra and ket notation 
 
It is often more convenient to express wavefunctions in bra and 
ket notation. 
 
bra: *ϕϕ = , 
ket: ψψ =  , 

transpose: [ ] ϕϕ =T  

overlap: τψϕψϕ d∫= * , *φψψϕ =  
density: ϕψψϕ =*  
integral with operator: τψϕψϕ dΩ∫=Ω ˆˆ *  

Eigenequation:  nnn φωφ =Ω̂  
Orthonormality:  nmmn δψψ =  

Expectation value: 
ψψ

ψψ Ω
=Ω

ˆ
ˆ  

Linear combination: ∑=Ψ
n

nnc ψ  
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IV. Heisenberg’s uncertainty principle 
 
If two operators commute: 
 
 0]ˆ,ˆ[ 21 =ΩΩ  
 
one can always find simultaneous eigenfunctions for both 
operators. This means that the corresponding observables can be 
simultaneously measured with arbitrary accuracy. 
 
Example, 1D free particle (V = 0) 
 

 Ψ=
Ψ

− E
dq
d

m 2

22
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h

,  or
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qp̂  and Ĥ  commute for a free particle: 
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So common eigenfunctions can be found and they can be 
measured simultaneously and accurately! 
 
Solution of Schrödinger equation: 
 
 kqikqikqq sincos)exp()( ±=±=Ψ ,  (plane wave) 
 
where the wave vector is h/mE)(k / 212= . 
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Action of momentum and Hamiltonian: 
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Ψ is eigenfunction of both qp̂ and Ĥ , the eigenvalues are  
 

 kpq h= ,  
m
kE

2

22h
=  

 

de Broglie’s relation: 
 

λπλ
π hhkp ===

2
2

h   (
k
πλ 2

= ) 

 
It is impossible to specify simultaneously, with arbitrary 

precision, both the momentum and position of a particle, 
because hipq =]ˆ,ˆ[ . The constraint 
 
 /2   h≥ΔΔ qp  
 
is Heisenberg’s uncertainty principle, and p and q are 
complementary observables. 
 
Time and energy is another pair of complementary observables: 
 
 h  ≥ΔΔ tE /2 
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Example: Calc. the position uncertainty of a 1.0 kg particle with 
a speed uncertainty of 10-6 m/s. What if the mass is 1.0×10-31 
kg? 
 

 

m.       

 m/s. kgJs/.       

vm/ p/ q 
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××××=
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However, for a particle with the electronic size 
 
 Δq = 525 m 
 
 
 
Classical - quantum correspondence: 
 
    Classical   Quantum 
__________________________________________ 
State   q + p   Ψ(q) 
Eq. of motion  Newton   Schrödinger 
Wave nature  no    yes 
Interference  no    yes 
Uncertainty  no    yes 
Energy   arbitrary   often quantized 
Applicability  1 m, 1 kg   1 pm, 10-25 kg 
__________________________________________ 
 
 
 


