Chapter 4, Approximate methods

I. Time-independent perturbation method

Non-degenerate cases:

Suppose a real system is close to a simple system, the
difference can be treated as a perturbation:

A =Ho+ A

where I3|0‘¢r?> = Er?‘¢,?> Is known and the eigenfunctions are

non-degenerate.

We assume the solution of H ‘Wn> = E,

(//n> can be

approximated as

H=Hy+AH',  where 0< <1 isan arbitrary number
0 1 2| (2

) =|o9 )+ 2|g0 )+ 22\82) + .

E,=EX+EW + 2ED + ..

Substituting back, we have



HAO(¢r?>+/1 ,21)>+/12 ,$2)>+...)
+/1HA’(¢r?>+/1 ,21)>+/12 ,§2>>+...)

= (EQ + ﬁE,ﬁl) + /12Er(,2) +..)( ¢r?> +A

r(,1)> + 22

)+

Counting the factors with the same power of A.

0" order (A°):
ol - 04
1% order (A):
1R+ Rolaf? ) = ER )+ Elak?
2" order (1°):

Hg0)+ Aolg? | = ED | )+ ER|d® )+ B3 )

For 1% order corrections, expand

)= 2end o]




and then substitute back to 1% order eq.

Hlg0 )+ ﬁo%cglnge,gl)

i)+ EnZe|)

Multiply <¢ on the left and integrate
(IR + e (dnl ol ) = ED (4R o) + ENZ R o)

Noting orthonormality <¢n ‘gék> nk » We have

<¢r?‘H ‘¢n > + zc(l) EI95nk E(l) + E ZC(1)§

SO

0 = (48]0
Now multiply <¢r?., ‘ m = n, on the left and integrate

(gm0 )+ ZefR (o

Ho ¢19> = Er(11)<¢r(r)1

g )+ ERZ R (dn |4
Noting orthonormality again, we have

(gnlF) +zcr(}k) EQSm = ES zc(1)5
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1% order corrections to wavefunction include other 0™ states
(virtual excitation).

2" order correction to energy:

#)

E@ v (9| n |

m=n E,? - Er?]
Higher order corrections exist, but much more complicated.

Example: Harmonic oscillator in an external field

0™ order solution=> harmonic oscillator:

EQ = (LL njha),
2

#)=|n)



Express perturbation in ladder operators:

HA’:—é‘qx:—é‘q\/zﬂzw(ﬁJFW)

1% order correction:

ERY = (g0

=—€q%<n n>
—-en ;" [alnin-4+Va+3inn+3]-0

No contribution.
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2" order correction:

OHA,¢O ¢0 HA’¢O
Er(]Z)Zm%s:n< n‘ E§>—<ET% n>
~ Al 2
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ho 24u® mzn n—m
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Exact solution:

2
E, = (1 T n)ha) _ (8q)2
2 2 U@

Perturbation involving degenerate states

Degeneracy could cause problems with the denominator in
above expressions.

Suppose the nth states are L-fold degenerate for

Ho

don)=ERdh) =12, L

One can always recombine the degenerate states to form a new
set of eigenfunctions:

b )

L
‘Zio> = Elcil

such that they become non-degenerate with the perturbation.
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How to determine c; ? We start by doing the same perturbative
expansions:

i) =20 )+ A )+ 2 2 )+
E.=E’+AE® + PEP) + ..

Following the same procedure, we have

0" order:

Hol20)=E%) =L, L
1% order:

(Ho—EN 22) = (E® - A 2°)

Expand the 1% order wavefunction in terms of the 0" order ones

‘Zi(1)> = IZ::lail ¢r?,l>+zk:bik‘¢l?>

where ‘ﬂ?> are all the non-degenerate states of Hy,.



Substitute it back to the 1* order equation, we have

)

> 8 (ES — ED)| ) )+ by (B0~ EO)|gP) = Xcy (EQ - H')
=1 k =1

Multiplying on the left with <¢r?’|, and integrate

L

2.Cj (Ei(l)<¢r?,l’

=1

HA'¢r?,I>):O

dr)~ (v
noting orthogonality <¢r?,| ‘gﬁl? > =0.

Finally, we have the secular equations:

L
Elcil (Ei(l)sm —Hj, ): 0

where S and H’ are the overlap and Hamiltonian matrices.

In order for the above simultaneous linear equation to have non-
trivial solutions, the corresponding determinant has to be zero:

det‘H,’,I = Ei(l)S”‘ =0 (secular determinant)

In other words, the coefficients (c; ) and the 1% order energy
correction (E{Y) can be obtained at the same time.



I1. Variation theory

The expectation value of an operator cannot be less than the
lowest eigenvalue:

w|H
-

V)
W)~

w): trial wave function.

Proof:

‘l//> = ch‘¢n>

where |, ) are eigenstates of H .

|1 ‘

)

— ZZC;Cm Emé‘nm

nm

= Z‘Cn‘z E,
n

W> = %%C;Cm <¢n

Assuming normalization, (y |y ) = Z\cn\z =1, we have

<W‘HA‘W>— Eo :%‘Cn‘z(En —Eg)20



If trial wave function depends on an adjustable parameter, y(c),
one can vary c to achieve best results:
OE)

AT
oC

Example: ground state wavefunction of a harmonic oscillator.

cx?

Trial wave function: w =e~

SO
<l//HAW> h? k 1
C+—C
wly) 2m
2
O(E) _n k2 _g
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solution:

Jkm

C=—
2h

Substituting back to (E)

PJkm k28 B[k B[k 1
(E)= R R KRR ek,
2m 2h 8+km 4\m 4\m 2

Linear variation:

v)=3cilgp) with |¢;) as arbitrary basis
i

Substituting back to (E)

~

> > cicj(gi|H
i j

0;) ?%CiCjHij

E— —
Y ycicilo o) %%Ci‘:jsij
i

It can be proven to lead to the secular equations:

> ci(Hiy —ESj)=0

In matrix form:

Hc = ScE (generalized eigenequation)
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Hamiltonian matrix;

A

Hij =<(Pi <0j>

Overlap matrix:
Sij = (o1 ;)

Solution can be obtained from the secular determinant:

det‘Hik — ESik‘ =0

If basis functions are orthonormal, <(0i ‘(0j> = 9j;, the secular
equation becomes simply an eigenequation:

Hc=cE
in which E is a diagonal matrix containing all the eigenvalues

and c are the corresponding eigenvectors.

Pros and cons of two approximation methods:

e Perturbation methods are good for small deviations from
simple systems, not good for high-order corrections.

e Variation methods have lower limits, need no reference
systems, but numerically more involved.
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