Chapter 4, Approximate methods

I. Time-independent perturbation method

Non-degenerate cases:

Suppose a real system is close to a simple system, the difference can be treated as a perturbation:

$$
\hat{H}=\hat{H}_{0}+\hat{H}^{\prime}
$$

where $\hat{H}_{0}\left|\phi_{n}^{0}\right\rangle=E_{n}^{0}\left|\phi_{n}^{0}\right\rangle$ is known and the eigenfunctions are non-degenerate.

We assume the solution of $\hat{H}\left|\psi_{n}\right\rangle=E_{n}\left|\psi_{n}\right\rangle$ can be approximated as

$$
\begin{aligned}
& \hat{H}=\hat{H}_{0}+\lambda \hat{H}^{\prime}, \quad \text { where } 0 \leq \lambda \leq 1 \text { is an arbitrary number } \\
& \left|\psi_{n}\right\rangle=\left|\phi_{n}^{0}\right\rangle+\lambda\left|\phi_{n}^{(1)}\right\rangle+\lambda^{2}\left|\phi_{n}^{(2)}\right\rangle+\ldots \\
& E_{n}=E_{n}^{0}+\lambda E_{n}^{(1)}+\lambda^{2} E_{n}^{(2)}+\ldots
\end{aligned}
$$

Substituting back, we have

$$
\begin{aligned}
& \hat{H}_{0}\left(\left|\phi_{n}^{0}\right\rangle+\lambda\left|\phi_{n}^{(1)}\right\rangle+\lambda^{2}\left|\phi_{n}^{(2)}\right\rangle+\ldots\right) \\
& +\lambda \hat{H}^{\prime}\left(\left|\phi_{n}^{0}\right\rangle+\lambda\left|\phi_{n}^{(1)}\right\rangle+\lambda^{2}\left|\phi_{n}^{(2)}\right\rangle+\ldots\right) \\
& =\left(E_{n}^{0}+\lambda E_{n}^{(1)}+\lambda^{2} E_{n}^{(2)}+\ldots\right)\left(\left|\phi_{n}^{0}\right\rangle+\lambda\left|\phi_{n}^{(1)}\right\rangle+\lambda^{2}\left|\phi_{n}^{(2)}\right\rangle+\ldots\right)
\end{aligned}
$$

Counting the factors with the same power of λ :
$0^{\text {th }} \operatorname{order}\left(\lambda^{0}\right)$:

$$
\hat{H}_{0}\left|\phi_{n}^{0}\right\rangle=E_{n}^{0}\left|\phi_{n}^{0}\right\rangle
$$

$1^{\text {st }}$ order (λ^{1}):

$$
\hat{H}^{\prime}\left|\phi_{n}^{0}\right\rangle+\hat{H}_{0}\left|\phi_{n}^{(1)}\right\rangle=E_{n}^{(1)}\left|\phi_{n}^{0}\right\rangle+E_{n}^{0}\left|\phi_{n}^{(1)}\right\rangle
$$

$2^{\text {nd }}$ order (λ^{2}):

$$
\hat{H}^{\prime}\left|\phi_{n}^{(1)}\right\rangle+\hat{H}_{0}\left|\phi_{n}^{(2)}\right\rangle=E_{n}^{(2)}\left|\phi_{n}^{0}\right\rangle+E_{n}^{(1)}\left|\phi_{n}^{(1)}\right\rangle+E_{n}^{0}\left|\phi_{n}^{(2)}\right\rangle
$$

For $1^{\text {st }}$ order corrections, expand

$$
\left|\phi_{n}^{(1)}\right\rangle=\sum_{k} c_{n k}^{(1)}\left|\phi_{k}^{0}\right\rangle
$$

and then substitute back to $1^{\text {st }}$ order eq.

$$
\hat{H}^{\prime}\left|\phi_{n}^{0}\right\rangle+\hat{H}_{0} \sum_{k} c_{n k}^{(1)}\left|\phi_{k}^{0}\right\rangle=E_{n}^{(1)}\left|\phi_{n}^{0}\right\rangle+E_{n}^{0} \sum_{k} c_{n k}^{(1)}\left|\phi_{k}^{0}\right\rangle
$$

Multiply $\left\langle\phi_{n}^{0}\right|$ on the left and integrate

$$
\left\langle\phi_{n}^{0}\right| \hat{H}^{\prime}\left|\phi_{n}^{0}\right\rangle+\sum_{k} c_{n k}^{(1)}\left\langle\phi_{n}^{0}\right| \hat{H}_{0}\left|\phi_{k}^{0}\right\rangle=E_{n}^{(1)}\left\langle\phi_{n}^{0} \mid \phi_{n}^{0}\right\rangle+E_{n}^{0} \sum_{k} c_{n k}^{(1)}\left\langle\phi_{n}^{0} \mid \phi_{k}^{0}\right\rangle
$$

Noting orthonormality $\left\langle\phi_{n}^{0} \mid \phi_{k}^{0}\right\rangle=\delta_{n k}$, we have

$$
\left\langle\phi_{n}^{0}\right| \hat{H}^{\prime}\left|\phi_{n}^{0}\right\rangle+\sum_{k} c_{n k}^{(1)} E_{k}^{0} \delta_{n k}=E_{n}^{(1)}+E_{n}^{0} \sum_{k} c_{n k}^{(1)} \delta_{n k}
$$

SO

$$
E_{n}^{(1)}=\left\langle\phi_{n}^{0}\right| \hat{H}^{\prime}\left|\phi_{n}^{0}\right\rangle
$$

Now multiply $\left\langle\phi_{m}^{0}\right|, m \neq n$, on the left and integrate

$$
\left\langle\phi_{m}^{0}\right| \hat{H}^{\prime}\left|\phi_{n}^{0}\right\rangle+\sum_{k} c_{n k}^{(1)}\left\langle\phi_{m}^{0}\right| \hat{H}_{0}\left|\phi_{k}^{0}\right\rangle=E_{n}^{(1)}\left\langle\phi_{m}^{0} \mid \phi_{n}^{0}\right\rangle+E_{n}^{0} \sum_{k} c_{n k}^{(1)}\left\langle\phi_{m}^{0} \mid \phi_{k}^{0}\right\rangle
$$

Noting orthonormality again, we have

$$
\left\langle\phi_{m}^{0}\right| \hat{H}^{\prime}\left|\phi_{n}^{0}\right\rangle+\sum_{k} c_{n k}^{(1)} E_{k}^{0} \delta_{m k}=E_{n}^{0} \sum_{k} c_{n k}^{(1)} \delta_{m k}
$$

So

$$
c_{n m}^{(1)}=\frac{\left\langle\phi_{m}^{0}\right| \hat{H}^{\prime}\left|\phi_{n}^{0}\right\rangle}{E_{n}^{0}-E_{m}^{0}}, \quad n \neq m
$$

namely

$$
\left|\psi_{n}\right\rangle \approx\left|\phi_{n}^{0}\right\rangle+\sum_{m \neq n} \frac{\left\langle\phi_{m}^{0}\right| \hat{H}^{\prime}\left|\phi_{n}^{0}\right\rangle}{E_{n}^{0}-E_{m}^{0}}\left|\phi_{m}^{(0)}\right\rangle
$$

$1^{\text {st }}$ order corrections to wavefunction include other $0^{\text {th }}$ states (virtual excitation).
$2^{\text {nd }}$ order correction to energy:

$$
E_{n}^{(2)}=\sum_{m \neq n} \frac{\left\langle\phi_{n}^{0}\right| \hat{H}^{\prime}\left|\phi_{m}^{0}\right\rangle\left\langle\phi_{m}^{0}\right| \hat{H}^{\prime}\left|\phi_{n}^{0}\right\rangle}{E_{n}^{0}-E_{m}^{0}}
$$

Higher order corrections exist, but much more complicated.
Example: Harmonic oscillator in an external field

$$
\hat{H}=-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}}+\frac{1}{2} k x^{2}-\varepsilon q x
$$

$0^{\text {th }}$ order solution \rightarrow harmonic oscillator:

$$
E_{n}^{0}=\left(\frac{1}{2}+n\right) \hbar \omega, \quad\left|\phi_{n}^{0}\right\rangle=|n\rangle
$$

Express perturbation in ladder operators:

$$
\hat{H}^{\prime}=-\varepsilon q x=-\varepsilon q \sqrt{\frac{\hbar}{2 \mu \omega}}\left(\hat{b}+\hat{b}^{+}\right)
$$

$1^{\text {st }}$ order correction:

$$
\begin{aligned}
E_{n}^{(1)} & =\left\langle\phi_{n}^{0}\right| \hat{H}^{\prime}\left|\phi_{n}^{0}\right\rangle \\
& =-\varepsilon q \sqrt{\frac{\hbar}{2 \mu \omega}}\langle n| \hat{b}+\hat{b}^{+}|n\rangle \\
& =-\varepsilon q \sqrt{\frac{\hbar}{2 \mu \omega}}[\sqrt{n}\langle n \mid n-1\rangle+\sqrt{n+1}\langle n \mid n+1\rangle]=0
\end{aligned}
$$

No contribution.
$2^{\text {nd }}$ order correction:

$$
\begin{aligned}
E_{n}^{(2)} & =\sum_{m \neq n} \frac{\left\langle\phi_{n}^{0} \mid \hat{H}^{\prime} \phi_{m}^{0}\right\rangle\left\langle\phi_{m}^{0} \mid \hat{H}^{\prime} \phi_{n}^{0}\right\rangle}{E_{n}^{0}-E_{m}^{0}} \\
& =\frac{(\varepsilon q)^{2}}{\hbar \omega} \frac{\hbar}{2 \mu \omega} \sum_{m \neq n} \frac{\mid\langle n| \hat{b}+\hat{b}^{+}|m\rangle}{n-m} \\
& =\frac{(\varepsilon q)^{2}}{2 \mu \omega^{2}} \sum_{m \neq n}\left[\frac{|\sqrt{m}\langle n \mid m-1\rangle+\sqrt{m+1}\langle n \mid m+1\rangle|^{2}}{n-m}\right] \\
& =\frac{(\varepsilon q)^{2}}{2 \mu \omega^{2}}\left[\left(\frac{n+1}{-1}\right)+\left(\frac{n}{+1}\right)\right]=-\frac{(\varepsilon q)^{2}}{2 \mu \omega^{2}}
\end{aligned}
$$

$$
E_{n} \approx\left(\frac{1}{2}+n\right) \hbar \omega-\frac{(\varepsilon q)^{2}}{2 m \omega^{2}}
$$

Exact solution:

$$
\begin{aligned}
& V=\frac{k}{2}\left(x^{2}-\frac{2 \varepsilon q}{k} x\right)=\frac{k}{2}\left(x-\frac{\varepsilon q}{k}\right)^{2}-\frac{k}{2}\left(\frac{\varepsilon q}{k}\right)^{2} \\
& E_{n}=\left(\frac{1}{2}+n\right) \hbar \omega-\frac{(\varepsilon q)^{2}}{2 \mu \omega^{2}}
\end{aligned}
$$

Perturbation involving degenerate states

Degeneracy could cause problems with the denominator in above expressions.

Suppose the nth states are L-fold degenerate for

$$
\hat{H}_{0}\left|\phi_{n, l}^{0}\right\rangle=E_{n}^{0}\left|\phi_{n, l}^{0}\right\rangle \quad l=1,2, \ldots, L
$$

One can always recombine the degenerate states to form a new set of eigenfunctions:

$$
\left|\chi_{i}^{0}\right\rangle=\sum_{l=1}^{L} c_{i l}\left|\phi_{n, l}^{0}\right\rangle
$$

such that they become non-degenerate with the perturbation.

How to determine $c_{i l}$? We start by doing the same perturbative expansions:

$$
\begin{aligned}
& \left|\psi_{i}\right\rangle=\left|\chi_{i}^{0}\right\rangle+\lambda\left|\chi_{i}^{(1)}\right\rangle+\lambda^{2}\left|\chi_{i}^{(2)}\right\rangle+\ldots \\
& E_{i}=E_{n}^{0}+\lambda E_{i}^{(1)}+\lambda^{2} E_{i}^{(2)}+\ldots
\end{aligned}
$$

Following the same procedure, we have $0^{\text {th }}$ order:

$$
\hat{H}_{0}\left|\chi_{i}^{0}\right\rangle=E_{n}^{0}\left|\chi_{i}^{0}\right\rangle \quad i=1,2, \ldots, L
$$

$1^{\text {st }}$ order:

$$
\left(\hat{H}_{0}-E_{n}^{0}\right)\left|\chi_{i}^{(1)}\right\rangle=\left(E_{i}^{(1)}-\hat{H}^{\prime}\right)\left|\chi_{i}^{0}\right\rangle
$$

Expand the $1^{\text {st }}$ order wavefunction in terms of the $0^{\text {th }}$ order ones

$$
\left|\chi_{i}^{(1)}\right\rangle=\sum_{l=1}^{L} a_{i l}\left|\phi_{n, l}^{0}\right\rangle+\sum_{k} b_{i k}\left|\phi_{k}^{0}\right\rangle
$$

where $\left|\phi_{k}^{0}\right\rangle$ are all the non-degenerate states of \hat{H}_{0}.

Substitute it back to the $1^{\text {st }}$ order equation, we have

$$
\sum_{l=1}^{L} a_{i l}\left(E_{n}^{0}-E_{n}^{0}\right)\left|\phi_{n, l}^{0}\right\rangle+\sum_{k} b_{i k}\left(E_{k}^{0}-E_{n}^{0}\right)\left|\phi_{k}^{0}\right\rangle=\sum_{l=1}^{L} c_{i l}\left(E_{i}^{(1)}-\hat{H}^{\prime}\right)\left|\phi_{n, l}^{0}\right\rangle
$$

Multiplying on the left with $\left\langle\phi_{n, l^{\prime}}^{0}\right\rangle$ and integrate

$$
\sum_{l=1}^{L} c_{i l}\left(E_{i}^{(1)}\left\langle\phi_{n, l^{\prime}}^{0} \mid \phi_{n, l}^{0}\right\rangle-\left\langle\phi_{n, l^{\prime}}^{0} \mid \hat{H}^{\prime} \phi_{n, l}^{0}\right\rangle\right)=0
$$

noting orthogonality $\left\langle\phi_{n, l}^{0} \mid \phi_{k}^{0}\right\rangle=0$.
Finally, we have the secular equations:

$$
\sum_{l=1}^{L} c_{i l}\left(E_{i}^{(1)} S_{l^{\prime} l}-H_{l^{\prime} l}^{\prime}\right)=0
$$

where S and H^{\prime} are the overlap and Hamiltonian matrices.
In order for the above simultaneous linear equation to have nontrivial solutions, the corresponding determinant has to be zero:

$$
\operatorname{det}\left|H_{l^{\prime}}^{\prime}-E_{i}^{(1)} S_{l^{\prime}}\right|=0
$$

(secular determinant)

In other words, the coefficients $\left(c_{i l}\right)$ and the $1^{\text {st }}$ order energy correction ($E_{i}^{(1)}$) can be obtained at the same time.

II. Variation theory

The expectation value of an operator cannot be less than the lowest eigenvalue:

$$
\langle E\rangle=\frac{\langle\psi| \hat{H}|\psi\rangle}{\langle\psi \mid \psi\rangle} \geq E_{0}
$$

$|\psi\rangle$: trial wave function.
Proof:

$$
|\psi\rangle=\sum_{n} c_{n}\left|\phi_{n}\right\rangle
$$

where $\left|\phi_{n}\right\rangle$ are eigenstates of \hat{H}.

$$
\begin{aligned}
\langle\psi| \hat{H}|\psi\rangle & =\sum_{n m} \sum_{m} c_{n}^{*} c_{m}\left\langle\phi_{n}\right| \hat{H}\left|\phi_{m}\right\rangle \\
& =\sum_{n m} \sum_{n} c_{n}^{*} c_{m} E_{m} \delta_{n m} \\
& =\sum_{n}\left|c_{n}\right|^{2} E_{n}
\end{aligned}
$$

Assuming normalization, $\langle\psi \mid \psi\rangle=\sum\left|c_{n}\right|^{2}=1$, we have

$$
\langle\psi| \hat{H}|\psi\rangle-E_{0}=\sum_{n}\left|c_{n}\right|^{2}\left(E_{n}-E_{0}\right) \geq 0
$$

If trial wave function depends on an adjustable parameter, $\psi(c)$, one can vary c to achieve best results:

$$
\frac{\partial\langle E\rangle}{\partial c}=0
$$

Example: ground state wavefunction of a harmonic oscillator.
Trial wave function: $\psi=e^{-c x^{2}}$

$$
\begin{aligned}
\langle\psi| \hat{H}|\psi\rangle & =-\frac{\hbar^{2}}{2 m} \int_{-\infty}^{\infty} e^{-c x^{2}} \frac{d^{2}}{d x^{2}} e^{-c x^{2}} d x+\frac{k}{2} \int_{-\infty}^{\infty} e^{-c x^{2}} x^{2} e^{-c x^{2}} d x \\
& =\frac{\hbar^{2}}{m}\left(\frac{\pi}{8}\right)^{1 / 2} c^{1 / 2}+\frac{k}{4}\left(\frac{\pi}{8}\right)^{1 / 2} c^{-3 / 2} \\
\langle\psi \mid \psi\rangle & =\int_{-\infty}^{\infty} e^{-2 c x^{2}} d x=\left(\frac{\pi}{2}\right)^{1 / 2} c^{-1 / 2}
\end{aligned}
$$

So

$$
\begin{aligned}
& \frac{\langle\psi| \hat{H}|\psi\rangle}{\langle\psi \mid \psi\rangle}=\frac{\hbar^{2}}{2 m} c+\frac{k}{8} c^{-1} \\
& \frac{\partial\langle E\rangle}{\partial c}=\frac{\hbar^{2}}{2 m}-\frac{k}{8} c^{-2}=0
\end{aligned}
$$

solution:

$$
c=\frac{\sqrt{k m}}{2 \hbar}
$$

Substituting back to $\langle E\rangle$

$$
\langle E\rangle=\frac{\hbar^{2}}{2 m} \frac{\sqrt{k m}}{2 \hbar}+\frac{k}{8} \frac{2 \hbar}{\sqrt{k m}}=\frac{\hbar}{4} \sqrt{\frac{k}{m}}+\frac{\hbar}{4} \sqrt{\frac{k}{m}}=\frac{1}{2} \hbar \omega=E_{0}
$$

Linear variation:

$$
|\psi\rangle=\sum_{i} c_{i}\left|\varphi_{i}\right\rangle \quad \text { with }\left|\varphi_{i}\right\rangle \text { as arbitrary basis }
$$

Substituting back to $\langle E\rangle$

$$
E=\frac{\sum_{i} \sum_{j} c_{i} c_{j}\left\langle\varphi_{i}\right| \hat{H}\left|\varphi_{j}\right\rangle}{\sum_{i} \sum_{j} c_{i} c_{j}\left\langle\varphi_{i} \mid \varphi_{j}\right\rangle}=\frac{\sum_{i} \sum_{j} c_{i} c_{j} H_{i j}}{\sum_{i} \sum_{j} c_{i} c_{j} S_{i j}}
$$

It can be proven to lead to the secular equations:

$$
\sum_{i} c_{i}\left(H_{i k}-E S_{i k}\right)=0
$$

In matrix form:

$$
\mathrm{Hc}=\mathbf{S c E}
$$

Hamiltonian matrix:

$$
H_{i j}=\left\langle\varphi_{i}\right| \hat{H}\left|\varphi_{j}\right\rangle
$$

Overlap matrix:

$$
S_{i j}=\left\langle\varphi_{i} \mid \varphi_{j}\right\rangle
$$

Solution can be obtained from the secular determinant:

$$
\operatorname{det}\left|H_{i k}-E S_{i k}\right|=0
$$

If basis functions are orthonormal, $\left\langle\varphi_{i} \mid \varphi_{j}\right\rangle=\delta_{i j}$, the secular equation becomes simply an eigenequation:

$$
\mathrm{Hc}=\mathbf{c E}
$$

in which \mathbf{E} is a diagonal matrix containing all the eigenvalues and \mathbf{c} are the corresponding eigenvectors.

Pros and cons of two approximation methods:

- Perturbation methods are good for small deviations from simple systems, not good for high-order corrections.
- Variation methods have lower limits, need no reference systems, but numerically more involved.

