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Chapter 5. Atomic structure 
 
I. Hydrogenic atoms 
 
 H, He+, Li2+  (nucleus + single e-) 
 
Spectra of hydrogen atom 
 
 
 
 
 
Wavenumber: 
 

 
c
ν

λ
ν ==

1~  (cm-1) 

 
ν: frequency (s-1, Hz) 
λ: wavelength (nm) 
c: speed of light (3.0×108 m/s) 
 
Rydberg’s formula: 
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Example: Origin of the Balmer series 
 

     

nmcm
cm

cmcm
nn

R

5.65610565.6
9.15232

1
~
1

9.15232
3
1

2
110967711~

5
1

1
22

1
2
2

2
1

H

=×===

=⎟
⎠
⎞

⎜
⎝
⎛ −=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=

−
−

−−

ν
λ

ν
 

 
Bohr’s atom model 
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Ritz combination principle: wavenumber of a spectral line is the 
difference of two terms.  
 
Quantum mechanical description: 
 

 Ψ=Ψ EĤ  
 
where the total Hamiltonian is 
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where the potential is : 
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After removal of center of mass, the reduced Hamiltonian: 
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where reduced mass is )( nene mm/mm +=μ . 
 
Separation of motion 
 
 ),()(),,( φθφθ YrRr =Ψ  
 
Schrödinger eqn is reduced to two eqns: 
 
i. Angular eqn 
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 (Coulomb + centrifugal potential) 
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Solution: 
 
 2/
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l

ln  
 
where L

n,l
 the associated Laguerre polynomial and  
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0 = 52.9 pm: Bohr radius 
 
Atomic orbital: 
 

),()(),,( ,,,, φθφθ
ll mllnmln YrRr =Ψ   

 
Quantum numbers: 
 
Principal:    n = 1, 2, 3, ... 
 
Angular momentum: l = 0, 1, 2, ..., n-1 
 
Magnetic:   m

l
 = 0, ±1, ±2, ..., ±l 

 
For each n, there are n different l. 
 

For each n and l, there are 2l+1 different m
l
. 

 

For each n, there are Σ(2l+1) = n2 degeneracy. 
 
n, l, m

l
 uniquely specify an atomic orbital. 

 



 5

Classification of orbitals 
 
Shell: orbitals with the same n. 
 
 n =  1,  2,  3,  4,  ... 
  K  L  M  N  ...  n2 orbitals in a shell 
 
Subshell, orbitals with the same n but different l. 
 
 l =  0,  1,  2,  3,  4,  ... 
  s   p  d   f   g   ...     2l + 1 orbitals a subshell 
 
Energy quantization 
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Transition wavenumber: 
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which is the Rydberg’s formula.  
 
Ionization energy: Emin to remove e- from its ground state.  
 
For H (n=1), 
   HhcRI −= = 2.179×10-18 J = 13.6 eV 
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Atomic orbitals: 
 
s orbitals (l=0) 
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Probability to find e- at a point (r, θ, φ): 
 

 
φθθ

π
τ ddrdre

a
dP ar

s sin1 2/2
3
0

2
1

0−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=Ψ=

 
 
Probability to find e- on a spherical shell  
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Radial distribution function 
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Most probable radius: 
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It has 1 node at r = 2a0 
 
p orbitals (l = 1) 
 
Zero at r=0 and non-spherical. 
 
Three degenerate p orbitals (m

l
 = 0, ±1): 

 
For m

l
 = 0, p

z
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For m
l
 = ±1 ,        

 
p
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p
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Linear combinations: 
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Each p orbital has a nodal plane where Ψ = 0. 
 
d orbitals (l = 2) 
 
There are five d orbitals (m

l
 = 0, ±1, ±2). 

 
Spectral transition and selection rules 
 
Spectrum: recording of transitions between states.  

  | - E |E h 12=ν  

Not all transitions are allowed 
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Selection rules for hydrogenic atoms: 

  Δl = ±1,   Δm
l
 = 0, ±1 

 
Angular momentum conservation law (J

photon
 = 1h ) 

 
Example:  1s  2s,  Δl = 0, forbidden 
   1s  2pz,  Δl = 1, Δm

l
 = 0, allowed 

   3d  5s,  Δl = -2, forbidden 
   5s  2p,  Δl = 1, allowed 
 
II. Atomic units 
 
Action: 1=h  

Mass:  1=em  

Charge: 1
4 0

==
πε
eqe  

Length: bohr
em

a
e

 14
2

2
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0 ==
hπε  

Energy: hartreeeVE s  1 211.27)H(2 1 ==−  (Eh) 

Time: 2.42×10-17 s = 0.0242 fs = 1 atu 

H-atom Hamiltonian: 
 

 
r
ZH −∇−= 2

2
1ˆ  
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III. Structure of many-electron atoms 
 
Helium atom 
 
Hamiltonian ( 1=h ) 
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No analytical solution for Ψ=Ψ EĤ . 
 
0th order approximation: 
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For the ground state, 40 −=E  hartree. Bad approximation of 
the exact result of -2.904 hartree, due to ignoring 1/r12. 
 
Including 1st order perturbation: 
 

 hartree 75.22
8
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Variational treatment: 
 
Trial wavefunction (ground state):   
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rr ee λλ
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where σλ −= Z  is effective charge with σ as shielding factor. 
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Varying λ: 
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that is 
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In multi-electron atoms, the nuclear Coulomb field exerted on an 
electron is shielded by other electrons. 
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Pauli exclusion principle 
 
 Electrons are indistinguishable Fermions that carry spins 
( 2/1=s ). There are two types of spins corresponding to 

2/1±=sm : 
  

 
2
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2
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2
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with 
 

 sss msmsssmsS ,
4
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2
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Pauli principle: 
 
 For Fermions, the wavefunction is antisymmetric under 
exchange. 
 
Exchange operator: 
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122112 xxxxX φφ =  
 
Antisymmetry: 
 
 ),(),(),(ˆ

21122112 xxxxxxX φφφ −==  
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Possible He ground state wavefunctions: 
 
 ααααψ ssss 11)2()1()2(1)1(11 ==  
 αββαψ ssss 11)2()1()2(1)1(12 ==  
 βααβψ ssss 11)2()1()2(1)1(13 ==  
 ββββψ ssss 11)2()1()2(1)1(14 ==  
 
We note that  
 
 1112

ˆ ψψ =X ,  4412
ˆ ψψ =X  

 
so they violate Pauli principle and are not allowed. 
 
To construct allowed wavefunctions, we use the projection 
operator 2/)ˆ1( 12X−  to antisymmetrize: 
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Indeed, the antisymmetrized wavefunctions satisfy the Pauli 
principle: 
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There are two electrons in the 1s orbital with opposite spins! 
 
Total spin: 
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which corresponds to S=Ms=0, or a singlet state. In deriving the 
above results, we have used 
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Excited state He: 
 
Antisymmetrization of possible wavefunctions: 
 

 ααψ ss211 =  
 αβψ ss212 =  
 βαψ ss213 =  
 ββψ ss214 =  
 

yields: 
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The total spin: 
 
 αααα 22 2ˆ h=S    (S=1) 
 αααα h=zŜ    (Ms=1) 
 
 ββββ 22 2ˆ h=S    (S=1) 
 ββββ h−=zŜ    (Ms=-1) 
 
but 2ψ ′  and 3ψ ′  are not eigenfunctions of 2Ŝ . 
 
Linear combination of the two yields: 
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 )(2 )(ˆ 22 βααββααβ −=− hS   (S=1) 
 
 0)(ˆ =− βααβzS       (Ms=0) 
 
 0)(ˆ2 =+ βααβS      (S=0) 
 
 0)(ˆ =+ βααβzS      (Ms=0) 
 
 



 17

So, excited He has two configurations: 
 
Singlet excited state (S=0, Ms=0): 
 

 ))(1221(
2
1 βααβ −+ ssss  

 
Triplet excited state (S=1, Ms=0,±1):  
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Energy of triplet: 
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Note 1221 /1ˆˆˆ rhhH ++= , 
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because  
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 ss EEsshhss 2121 21ˆˆ21 +=+  

 
 012ˆˆ21 21 =+ sshhss  
 
The coulomb integral: 
 

 ss
r

ssJ ss 21121
12

21 =  

 
which is repulsion between 1s and 2s electrons, always positive. 
 
The exchange integral: 
 

 ss
r

ssK ss 12121
12

21 =  

 
which is due to exchange antisymmetry, mostly positive. 
 
For singlet excited state: 
 
 ssssssS KJEEE 212121 +++=  
 
Singlet excited state has higher energy than triplet, as spatial 
wave function of triplet is antisymmetric. (Hund’s rule) 
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Many-electron atoms 
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Hartree approximation: express total spatial wave function as 
product of orbitals: 
 
 )(...)2()1(,...2,1( NN ψψψ=Ψ  
 
It ignores the spins and correlations between electrons. 
 
Hartree-Fock approximation: Hartree+antisymmetrization 
 
Slater determinants always satisfy Pauli principle. 
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χ
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where χ  contain both spin and orbital parts and is called a 
spin-orbital. 
 
Pauli principle: no two electrons can occupy the same spin-
orbital. 
 
Slater determinants may not be eigenfunction of Ŝ . 
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He triplet (Ms=1): 
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Abbreviations: 
 
 ss 2  1=Ψ  
 
Be ground state (1s22s2): 
 
 ssss 2  2  1  1=Ψ  
 
where the bar stands for a β electron. 
 
Hartree-Fock equations (close-shell singlet): 
 
 iiiiF χεχ =ˆ  
 
which are single electron equations for the spin-orbitals. The 
Fock operator is an effective Hamiltonian: 
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averaged over all other electrons. The Coulomb and exchange 
operators are defined in terms of the corresponding integrals: 
 

 )1()2(1)2()1(ˆ
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The solution must be solved iteratively using the self-consistend 
field (SCF) approach, because the Fock operator depends on the 
spin-orbitals. 
 
H-F energy: 
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Koopmans’ theorem: 
 

• Ionization energy is approximately the energy of the 
highest occupied orbital: HI ε−≈   

 
• Electron affinity is approximately the energy of the lowest 

unoccupied orbital:  LEA ε−≈  
 

It is only an approximation because of electrons relaxation. 
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Electron correlation: 
 
 H-F approximation assumes single electron motion in a 
mean field generated by other electrons. It thus ignores the 
correlation between electrons. 
 
Correlation energy: 
 
 HFexactcorr EEE −=  
 
Usually small, but can be very important, can be taken into 
account using variational or perturbative methods. 
 
Relativistic contributions 
 

• spin is a relativistic effect, its contribution comes in the 
form of spin-orbit coupling 

 
• often large in heavy atoms as electrons moves very fast, 

approaching the speed of light. 
 
 
Building-up (Aufbau) principle: 
 
Electronic configuration of an atom can be determined by the 
following rules: 
 
i. Orbital ordering: Because of shelding (Z

eff = Z - σ), the atomic 
orbitals are not degenerate and have the following energy order: 
 
 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, ... 
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σ is the shielding constant,  s < p < d. 
 
ii. Pauli exclusion principle 
 
2 e- may occupy one orbital with opposite spins (α and β). 
 
iii. Double occupancy rule 
 
 Electrons occupy different orbitals of a given subshell 
before doubly occupying any one of them. 
 
Carbon atom (6 e-): [He]2s2 2p1 2p1 (an open shell atom). 
 
Valence electrons: outmost shell e-, 2s, 2p for C  
Core electrons: inner shell e-. 
 
iv. Hund’s rule (spin) 
 
Unpaired electrons tend to have parallel spins. (spin correlation) 
 
The 2 p e- in C have parallel sping αα (ββ). 
 
Oxygen atom (8 e-) 
 
 [He]2s2 2p2 2p1 2p1   αα or  ββ  
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III Atomic spectra 
 
An electronic configuration may give several states. Each state 
is represented by a term symbol: 
 
 2S+1L

J
 

Total orbital angular momentum L of an atom 

  L = l1 + l2 + ...    (vector sum) 

For a two-electron atom 

 L = |l1 - l2|, |l1 - l2| + 1, ..., l1 + l2 (Clebsch-Gordan series) 

Code of L:  
 

  L:  0 1 2 3 4   ... 
       S  P   D   F   G  ... 
 
Example: L for 3p13d1. 

 l1 = 1 and l2 = 2. 

so L = 1, 2, 3 or three terms P, D, F 
 
Total spin angular momentum S of an atom 

  S = s1 + s2 + ... 

For a two-electron atom 

 S = |s1 - s2|, | s1 - s2| + 1, ... , s1 + s2 

The multiplicity is 2S + 1 
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Example: S for a two e- atom. 

 s1 = 1/2, s2 = 1/2, 

so S = 0, 1, or multiplicity = 1 (singlet), 3 (triplet).  
 
Total angular momentum (Russell-Saunders coupling) 
 
  J = L + S     
or  
 
 J = |L - S|, |L - S| + 1, ..., L + S 
 
Examples: Ground and excited state Na, [Ne]3s1, [Ne]3p1. 
 
Single electron (ignore inner e-), l = 0, s = 1/2, 

L = 0,  S = 1/2 (2S+1 = 2),  J = 1/2 

So the ground state term is 2S1/2 

L = 1,  S = 1/2 (2S+1 = 2),  J = 1/2, 3/2 

So the term are 2P1/2 and 2P3/2. 
 
Excited state of Na splits to 2 sublevels because of the 
interaction between spin and orbital angular momenta (spin-orbit 
coupling, a relativistic effect)  
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Energy 
 
 )]1()1()1([)21( +++= S - SL - LJJhcA/  EL,S,J  
  
A is the coupling constant that increases with ~Z4, so spin-orbit 
coupling becomes more important for heavy atoms. 
 
Splitting: 
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Selection rules 

  ΔS = 0 

  ΔL = 0, ±1 with Δl = ±1 

  ΔJ = 0, ±1 but J = 0 cannot combine with J = 0 
 
Fine structure of the Na D lines 

 2S1/2  2P1/2, 2P3/2 

 ΔS = 0, ΔL = 1, ΔJ = 0, 1 (allowed) 
 
 
 
 


