Chapter 5. Atomic structure

I. Hydrogenic atoms
H, He*, Li2* (nucleus + single e-)

Spectra of hydrogen atom

Wavenumber:

== (o)

~ 1
Vv =—
A C

v. frequency (s, Hz)
A. wavelength (nm)
c: speed of light (3.0x10° m/s)

Rydberg’s formula:

~ 1 1
v =R, (—2 __Zj Ry = 109677 cm™ (Rydberg’s constant)

N
n=1n>n Lyman series (UV)
n=2 . Balmer series (VIS)
n=3 . Paschen series (IR)



Example: Origin of the Balmer series

v =Ry [i - ij = 109677c:m1(i - 3%) =15232.9cm™

n, n 2°
1 1 iy
A=—= =6.965%x10""cm = 656.5nm

v 15232.9cm™

Bohr’s atom model

(@)

Ritz combination principle: wavenumber of a spectral line is the
difference of two terms.

Quantum mechanical description:
HY = EY

where the total Hamiltonian is

2 2
H =—2h—v§ —h—vﬁ +V
m, 2m,

where the potential is :

1 (-2ze° .
V(r)= [ j (Coulomb attraction)
Areg\ 1



After removal of center of mass, the reduced Hamiltonian:

where reduced mass is g=mm_/(m, + m_).
Separation of motion

¥(r,0,4) =R(r)Y(0,¢)
Schrodinger eqn is reduced to two eqns:
I. Angular egn

[¥1,m (6.6) =101 + DAY, 1 (6.9)
with spherical harmonics Y, (6,¢4) as the solution.
Il. Radial eqn

~h*d? . Ze® +I(I+1)h2
2ur dr® dmsyr 2ur?

R(r) = ER(r)

(Coulomb + centrifugal potential)



Solution:

Rn,I (r) = IOI I—n,I (p)e_plz

where LnI the associated Laquerre polynomial and

272 ur
P = ~
nm, a,

a =52.9 pm: Bohr radius

Atomic orbital;

an,I,ml (r,49,¢) = Rn,I (r)YI,mI (‘9’¢)

Quantum numbers:

Principal: n=1,23, ..
Angular momentum: 1=0,1,2,...,n-1
Magnetic: m =0, £1, £2, ..., £l

For each n, there are n different |.

For each n and I, there are 21+1 different m.

For each n, there are 2(21+1) = n” degeneracy.

n, I, m uniquely specify an atomic orbital.



Classification of orbitals

hell: orbitals with the same n.

n=1, 2, 3, 4, ..
K L M N .. n’ orbitals in a shell

Subshell, orbitals with the same n but different I.

|: ’ 11

2
p d

v o

, 3, 4, .
f g .. 2| + 1 orbitals a subshell

Energy quantization

_ -Z%.e* 1 hcRy

E = =
327%e5h? n® n?

0 (independent of | and m))

Transition wavenumber:

- BBy _ Ry [ Ry)_p (1 1
T e I A T
2 1 1 2

which is the Rydberg’s formula.

lonization energy: E,,;, to remove e- from its ground state.

For H (n=1),
| =—hcR,=2.179x10" J = 13.6 eV



Atomic orbitals:;

s orbitals (1=0)

>\ 7mag (spherical)

Probability to find e- at a point (r, &, ¢):

P—W2dr = (isjez”ao r2sin adrd 6 6
71y

Probability to find e- on a spherical shell

3

T 2
Pdr = [sinad@ [dg¥ Predr = 47zr2(ije2”a°dr
0 0 7a

Radial distribution function

P =W¥4mr°

Most probable radius:
dPr 3 d -2rla,,.2
—L =4\l my | —( “°r
dr 7[( 0)dr( )

_ C[i(le/ao)rz n e—2r/a0 ir2:|
dr dr



[ or2 _
:C _ e 2r/a0 +2re 2r/a0
dy

2

_cl- Zr}ez”alo
o

at maximum when
-2r°la, +2r=0, or r=a,

ns wavefunction has n-1 nodes.

1 1/2
PR :( 3} (Z_L]ermao =0
878, a,

It has 1 node at r = 2a,

p orbitals (I = 1)
Zero at r=0 and non-spherical.
Three degenerate p orbitals (m =0, £1):

Form =0, p

¥, oc f(r)coséd =rcosék'(r) = zf'(r)



FormI:il,

P, ¥, o f(r)singe"
¥, o f(r)singe™

1"

Linear combinations:

. ¥ oW+, =f(r)sindEe"” +e?)
= f'(r)sin@dcos¢
=rsin@cosdgf "(r) = xf"(r)

D: ¥, oc ¥, -, = f(r)sind(e'’ —e )
=y (r)

Each p orbital has a nodal plane where ¥ = 0.

d orbitals (I = 2)

There are five d orbitals (m =0, £1, £2).

Spectral transition and selection rules

Spectrum: recording of transitions between states.
hv = |E, - Ef

Not all transitions are allowed



Selection

rules for hydrogenic atoms:

Al = +1, Am = 0, +1

Angular momentum conservation law (Jphoton =1h)

Example: 1s = 2s, Al =0, forbidden
1s = 2p,, Al=1, Am = 0, allowed
3d - 5s, Al = -2, forbidden
5s =2 2p, Al =1, allowed

1. Atomic units

Action: n=1

Mass: m, =1

e
Charge: q, = =1
JArs,
2
Length: a, = 4”‘90? =1bohr
m.e
Energy: —2E, (H)=27.211eV =1hartree (Ey)
Time:  2.42x10""s=0.0242 fs =1 atu

H-atom Hamiltonian:

q =

_Tyli_=

1 Z

2 r



[11. Structure of many-electron atoms

Helium atom

Hamiltonian (72 =1)

ﬁ:-;z_vg—é—é 1 (Z2=2)

h I N
No analytical solution for HY = E¥.
0" order approximation:
I'A|o = ﬁ1 T ﬁ2

“//0> = |nylymy )| n,l,m, )

z¢ Z7°
E'=———— (h=1)
2n;  2n;

For the ground state, E? =—4 hartree. Bad approximation of
the exact result of -2.904 hartree, due to ignoring 1/ry».

Including 1% order perturbation:

iw0> =—4+ 22 =—2.75 hartree

12

E:—4+<w0
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Variational treatment:

Trial wavefunction (ground state):

‘W>:\/Eelrl\/fe/lr2
T T

where 1 =Z - o is effective charge with o as shielding factor.

H
E= <W W> =1 -2(Z —/1)/1+%
Wly) 8
Varying A:
d—E=—2/1—22 +4/1+§:0
dA 8
that is
A=7Z - >
16
and
5 \2
E = —(Z — E) =—2.85 hartree (Z=2)

In multi-electron atoms, the nuclear Coulomb field exerted on an
electron is shielded by other electrons.
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Pauli exclusion principle

Electrons are indistinguishable Fermions that carry spins
(s =1/2). There are two types of spins corresponding to
m, =+1/2:

a)=lsimg)=

N |~

N+~ ————

B)=ls.m;)=

NI~ N

with

§2

s,m) = s(s +DA’[s,mg) = %hz\s,ms>

S,|s,m) =mgs,mg) = i%h

s,m)

Pauli principle:

For Fermions, the wavefunction is antisymmetric under
exchange.

Exchange operator:

X 10| #(X0, %)) = |9 (Xp, X))

Antisymmetry:

)212‘ P(Xq, X2)> = ‘¢(X2’ X1)> = —‘ P(X, X2)>
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Possible He ground state wavefunctions:

1) =15(1))|1s(2)) (1)) (2)) = |1sls)| acx )
v,) =1s(1))1s(2))|a (1)) B(2)) = |1s1s) a3)
ws) =|15(1))15(2)) QD)) (2)) =|1s1s)| S )
vs)=|15(1))15(2))| B(1))| B(2)) = 1s1s) 5B)

We note that

)212‘W1> = “//1>1 )212“//4> = "//4>
so they violate Pauli principle and are not allowed.

To construct allowed wavefunctions, we use the projection
operator (1—X,,)/~/2 to antisymmetrize:

‘l//1,> = %(1— >212)"//1> =0

“//§> = %(1— >212)‘§V2> = %Q‘//2> _“//3>)
-5 s1s)(ap) | )

i) = 35[1sts)( ) =|ap) =)

4

‘//4>:O
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Indeed, the antisymmetrized wavefunctions satisfy the Pauli
principle:

Xlz%‘lslswa,@ —‘ﬂa»
:%\1sls>(},8a> ~|ap))
= -%\1sls>(}aﬂ> -|Ba))

There are two electrons in the 1s orbital with opposite spins!
Total spin:
S2lw) = (Sy+5:)%|w)
= [§12 + S:22 + 28A1zSAzz T Sj1+§2— T SA1—§2+)]"//>
_ 1(£+1j+1(1+1j—211—1 7?y)
2\ 2 2\ 2 22
=S(S +1)r°|y)=0
éz‘w> = (élz + éZZ)‘W> = Msh‘w> =0

which corresponds to S=M¢=0, or a singlet state. In deriving the
above results, we have used

14



2(é\lyé\Zy + é\1x§2x)
= (§1x + i§1y)(§2x - iSAzy) + (§1x - i§ly)(§2x + iSAzy)

~

=55, +5.S,.

(§1+§2— + §1_§2+)Qaﬂ> - ‘ﬂ“»
_ -hQaﬂ> —\,Ba>)

Excited state He:

Antisymmetrization of possible wavefunctions:

) = 1525 act)
v,)=1s2s)af3)
vs) =|152s) Bar )
va)=[1525) 3B)

yields:

) :%\aa>(\1828>—\2315>)

Vi) = (1525) ) -[2515) )

Vi) =5 (1525) ) = 215 )
Vi) = 7518)(1525) - 2515)

15



The total spin:

S?aa) = 2n?|aa) (S=1)
S,|aa)=Haa) (Ms=1)
S*| aB) = 21°| Bp) (5=1)
S,|BB)=~1pp) (Ms=-1)

but |y5) and |w3) are not eigenfunctions of S°.

Linear combination of the two yields:

) = (1525) + 2518 (af) | pa))

)= (1525) - |2515)) () + | )

and
S?(ap)-|pa) = 21*(ap) -| far)) (5=1)
S,(ap)~|pa)) =0 (Ms=0)
S?(|lep)+|pa)) =0 (S=0)

S,(ep) +|pa)) =0 (Ms=0)
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So, excited He has two configurations:

Singlet excited state (S=0, Ms=0):

%(\1323>+\2sls>)(\aﬂ> ~|fa))

Triplet excited state (S=1, M=0,£1):

1 aa)
ﬁ(‘1328> —|2s1s))4 , BB)
- ap) +| )

Enerqy of triplet:

E :%<aa\(<1525\—<2518\)lfl (1525) | 2515) cr)

= %((1323“—]\1323>+<2513\I—AI\2513>

— (152s|H|2s1s) — (2s1s|H[152s))

= (1s2s|H|1s2s) - (1s2s|H|2sL1s)
Note H=h +h, +1/r,,

E = (1s2s]hy + hy + i\1525} —(1s2s|y +hy + i\2515}
2 12
- Els + E25 + ‘]1525 - KlsZs
because
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(1525 + hy[1528) = Ejg + Epg
(1s2s|h, + h,|2s1s) = 0

The coulomb inteqgral:

Jyszs = (1525|1525}
12

which is repulsion between 1s and 2s electrons, always positive.

The exchange inteqgral:

Kisos = <1325\i\2515>

P
which is due to exchange antisymmetry, mostly positive.
For singlet excited state:

ES - Els + EZS + ‘]1323 + KlsZs

Singlet excited state has higher energy than triplet, as spatial
wave function of triplet is antisymmetric. (Hund’s rule)
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Many-electron atoms

=——zv2 z e

i il

Hartree approximation: express total spatial wave function as
product of orbitals:

WL2.N) =y @)y @)y (N))

It ignores the spins and correlations between electrons.

Hartree-Fock approximation: Hartree+antisymmetrization

Slater determinants always satisfy Pauli principle.

n®) @) . @)
1 ‘Z1(2)>
AN TR
‘Zl(N)> ‘ZN(N)>
:‘lez---ZN‘

where | y) contain both spin and orbital parts and is called a
spin-orbital.

Pauli principle: no two electrons can occupy the same spin-
orbital.

Slater determinants may not be eigenfunction of S.

19



He triplet (Ms=1):

Hv:ijsa»am> 2s(1))| (D))
V2 [15(2))|e(2)) 25(2))|e(2))
= %[\13(1» a(1))25(2))]e(2)) - [2s@) ) a(D))15(2) ) «(2))]

= %\a(l)}\a(Z)}[\ls(l)}\ 25(2)) —|2s(1))[15(2))]
Abbreviations:
V) =[ls 25|
Be ground state (1s°2s°):
W)=(ls Is 25 2s
where the bar stands for a g electron.

Hartree-Fock equations (close-shell singlet):

ﬁi‘Zi>:gi‘Zi>

which are single electron equations for the spin-orbitals. The
Fock operator is an effective Hamiltonian:

= _ 1o 2 Jbhs5 v K
==V Ir+J_§l[2aj(|) K. ()]

20



averaged over all other electrons. The Coulomb and exchange
operators are defined in terms of the corresponding integrals:

X (2)>}\ %)
i (2)>}\ 7i®)

Jilx@) ={<z,- (2)%

1
2

Kj‘}(i 1)) :{<Zj (2)

The solution must be solved iteratively using the self-consistend
field (SCF) approach, because the Fock operator depends on the
spin-orbitals.

H-F energy:

N N
E=2Y6- 3 (235 - Ky)

i=1 i, j=1

Koopmans’ theorem:

e |onization enerqgy is approximately the energy of the
highest occupied orbital: | = —g,

e Electron affinity is approximately the energy of the lowest
unoccupied orbital: EA=x—¢_

It is only an approximation because of electrons relaxation.

21



Electron correlation:

H-F approximation assumes single electron motion in a
mean field generated by other electrons. It thus ignores the
correlation between electrons.

Correlation energy:

E

corr — Eexact - EHF

Usually small, but can be very important, can be taken into
account using variational or perturbative methods.

Relativistic contributions

e spin is a relativistic effect, its contribution comes in the
form of spin-orbit coupling

e often large in heavy atoms as electrons moves very fast,
approaching the speed of light.

Building-up (Aufbau) principle:

Electronic configuration of an atom can be determined by the
following rules:

I. Orbital ordering: Because of shelding (Z_=Z - o), the atomic
orbitals are not degenerate and have the following energy order:

1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, ...

22



o is the shielding constant, s<p<d.

Ii. Pauli exclusion principle

2 e~ may occupy one orbital with opposite spins (« and /).

1il. Double occupancy rule

Electrons occupy different orbitals of a given subshell
before doubly occupying any one of them.

Carbon atom (6 e-): [He]Zs2 2p1 2p1 (an open shell atom).

Valence electrons: outmost shell e-, 2s, 2p for C
Core electrons: inner shell e-.

Iv. Hund’s rule (spin)

Unpaired electrons tend to have parallel spins. (spin correlation)
The 2 p e in C have parallel sping oo (Bf).
Oxygen atom (8 e-)

[He]2s2 2p2 2pt 2p! ac. or PP
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11 Atomic spectra

An electronic configuration may give several states. Each state
IS represented by a term symbol:

25+1

L

J

Total orbital angular momentum L of an atom

L=1+1,+.. (vector sum)
For a two-electron atom
L=l; - |l;-+1,.. 1 +1, (Clebsch-Gordan series)
Code of L:

L: 1

0 2 3 4
S P D F G
Example: L for 3p13d1.

l,=1and |, =2.
so L=1,2 3orthreetermsP,D, F

Total spin angular momentum S of an atom

S=s5.+5s,+ ...
For a two-electron atom
S=[s1-8l 18-85l + 1., 81+ 8

The multiplicity 1s 2S + 1

24



Example: S for a two e- atom.
s, =1/2,s,=1/2,
so S =0, 1, or multiplicity = 1 (singlet), 3 (triplet).

Total angular momentum (Russell-Saunders coupling)

J=L+S
or

J=|L-S|,|L-S|+1,..,L+S
Examples: Ground and excited state Na, [Ne]3si, [Ne]3p?.
Single electron (ignore innere-), 1 =0,s=1/2,
L =0, S=1/2 (25+1 = 2), J=1/2
So the ground state term is 2S,,

L=1, S =1/2 (25+1 = 2), J=1/2, 3/2
So the term are 2P, and 2P)».
Excited state of Na splits to 2 sublevels because of the

interaction between spin and orbital angular momenta (spin-orbit
coupling, a relativistic effect)
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Energy

E s, = M/2)hcAI(I +1) - L(L+1) - S(S +1)]

A is the coupling constant that increases with ~Z#, so spin-orbit
coupling becomes more important for heavy atoms.

Splitting:
Av =2E _ L Arsa a1 -3 07 +1)]
hc 2

= 1x17.2cm—1[§(§+1) —1(3+1)] =11.5cm™
2 2°2 2°2

Selection rules
AS=0
AL =0, +1 with Al = 1

AJ =0, 1 but J = 0 cannot combine with J =0

Fine structure of the Na D lines

2S11p > 2Pyp, 2P3p

AS=0,AL=1,AJ=0,1 (allowed)
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