Chapter 5. Atomic structure

I. Hydrogenic atoms

$\mathrm{H}, \mathrm{He}^{+}, \mathrm{Li}^{2+} \quad$ (nucleus + single e^{-})

Spectra of hydrogen atom

Wavenumber:

$$
\tilde{v}=\frac{1}{\lambda}=\frac{v}{c} \quad\left(\mathrm{~cm}^{-1}\right)
$$

v. frequency $\left(\mathrm{s}^{-1}, \mathrm{~Hz}\right)$
λ : wavelength (nm)
c : speed of light $\left(3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)$
Rydberg's formula:

$$
\begin{array}{ll}
\quad \tilde{v}=R_{\mathrm{H}}\left(\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right) & R_{\mathrm{H}}=109677 \mathrm{~cm}^{-1} \text { (Rydberg's constant) } \\
n_{1}=1, n_{2}>n_{1} & \text { Lyman series (UV) } \\
n_{1}=2, . . & \text { Balmer series (VIS) } \\
n_{1}=3, . . & \text { Paschen series (IR) }
\end{array}
$$

Example: Origin of the Balmer series

$$
\begin{aligned}
& \tilde{v}=R_{\mathrm{H}}\left(\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right)=109677 \mathrm{~cm}^{-1}\left(\frac{1}{2^{2}}-\frac{1}{3^{2}}\right)=15232.9 \mathrm{~cm}^{-1} \\
& \lambda=\frac{1}{\widetilde{v}}=\frac{1}{15232.9 \mathrm{~cm}^{-1}}=6.565 \times 10^{-5} \mathrm{~cm}=656.5 \mathrm{~nm}
\end{aligned}
$$

Bohr's atom model

$$
\begin{aligned}
& h v=E_{2}-E_{1} \\
& \tilde{v}=\frac{v}{c}=E_{2} / c h-E_{1} / c h=T_{2}-T_{1}
\end{aligned}
$$

Ritz combination principle: wavenumber of a spectral line is the difference of two terms.

Quantum mechanical description:

$$
\hat{H} \Psi=E \Psi
$$

where the total Hamiltonian is

$$
\hat{H}=-\frac{\hbar^{2}}{2 m_{e}} \nabla_{e}^{2}-\frac{\hbar^{2}}{2 m_{n}} \nabla_{n}^{2}+V
$$

where the potential is :

$$
V(r)=\frac{1}{4 \pi \varepsilon_{0}}\left(\frac{-Z e^{2}}{r}\right)
$$

After removal of center of mass, the reduced Hamiltonian:

$$
\begin{aligned}
\hat{H} & =-\frac{\hbar^{2}}{2 \mu} \nabla_{r}^{2}+V \\
& =-\frac{\hbar^{2}}{2 \mu} \frac{1}{r} \frac{\partial^{2}}{\partial r^{2}} r+\frac{\hat{l}^{2}}{2 \mu r^{2}}-\frac{Z e^{2}}{4 \pi \varepsilon_{0} r}
\end{aligned}
$$

where reduced mass is $\mu=m_{e} m_{n} /\left(m_{e}+m_{n}\right)$.

Separation of motion

$$
\Psi(r, \theta, \phi)=R(r) Y(\theta, \phi)
$$

Schrödinger eqn is reduced to two eqns:
i. Angular eqn

$$
\hat{l}^{2} Y_{l, m_{l}}(\theta, \phi)=l(l+1) \hbar^{2} Y_{l, m_{l}}(\theta, \phi)
$$

with spherical harmonics $Y_{l, m_{l}}(\theta, \phi)$ as the solution.
ii. Radial eqn

$$
\left[-\frac{\hbar^{2}}{2 \mu r} \frac{d^{2}}{d r^{2}} r-\frac{Z e^{2}}{4 \pi \varepsilon_{0} r}+\frac{l(l+1) \hbar^{2}}{2 \mu r^{2}}\right] R(r)=E R(r)
$$

(Coulomb + centrifugal potential)

Solution:

$$
R_{n, l}(r)=\rho^{l} L_{n, l}(\rho) e^{-\rho / 2}
$$

where $L_{n, l}$ the associated Laguerre polynomial and

$$
\rho=\frac{2 Z \mu r}{n m_{e} a_{0}}
$$

$a_{0}=52.9 \mathrm{pm}: \underline{\text { Bohr radius }}$
Atomic orbital:

$$
\Psi_{n, l, m_{l}}(r, \theta, \phi)=R_{n, l}(r) Y_{l, m_{l}}(\theta, \phi)
$$

Quantum numbers:

> Principal:

$$
n=1,2,3, \ldots
$$

Angular momentum: $\quad l=0,1,2, \ldots, n-1$
Magnetic:

$$
m_{l}=0, \pm 1, \pm 2, \ldots, \pm l
$$

For each n, there are n different l.
For each n and l, there are $2 l+1$ different m_{i}.
For each n, there are $\Sigma(2 l+1)=n^{2}$ degeneracy.
n, l, m_{l} uniquely specify an atomic orbital.

Classification of orbitals

Shell: orbitals with the same n.

$$
n=\begin{array}{lllll}
1, & 2, & 3, & 4, & \ldots \\
\mathrm{~K} & \mathrm{~L} & \mathrm{M} & \mathrm{~N} & \ldots
\end{array} \quad n^{2} \text { orbitals in a shell }
$$

Subshell, orbitals with the same n but different l.

$$
l=\begin{array}{lllllll}
0, & 1, & 2, & 3, & 4, & \ldots & \\
s & p & d & f & g & \ldots & 2 l+1 \text { orbitals a subshell }
\end{array}
$$

Energy quantization

$$
E_{n}=\frac{-Z^{2} \mu e^{4}}{32 \pi^{2} \varepsilon_{0}^{2} \hbar^{2}} \frac{1}{n^{2}}=-\frac{h c R_{\mathrm{H}}}{n^{2}} \quad \text { (independent of } l \text { and } m_{l} \text {) }
$$

Transition wavenumber:

$$
\tilde{v}=\frac{E_{n_{2}}-E_{n_{1}}}{\hbar c}=-\frac{R_{\mathrm{H}}}{n_{2}^{2}}-\left(-\frac{R_{\mathrm{H}}}{n_{1}^{2}}\right)=R_{\mathrm{H}}\left(\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right)
$$

which is the Rydberg's formula.
Ionization energy: $E_{\text {min }}$ to remove e^{-}from its ground state.
For H ($n=1$),

$$
I=-h c R_{\mathrm{H}}=2.179 \times 10^{-18} \mathrm{~J}=13.6 \mathrm{eV}
$$

Atomic orbitals:
s orbitals (l=0)

$$
\Psi_{1 s}=\sqrt{\frac{1}{\pi a_{0}^{3}}} e^{-r / a_{0}}
$$

(spherical)

Probability to find e^{-}at a point (r, θ, ϕ) :

$$
P=\Psi_{1 s}^{2} d \tau=\left(\frac{1}{\pi a_{0}^{3}}\right) e^{-2 r / a_{0}} r^{2} \sin \theta d r d \theta d \phi
$$

Probability to find e^{-}on a spherical shell

$$
P d r=\int_{0}^{\pi} \sin \theta d \theta \int_{0}^{2 \pi} d \phi \Psi^{*} \Psi r^{2} d r=4 \pi r^{2}\left(\frac{1}{\pi a_{0}^{3}}\right) e^{-2 r / a_{0}} d r
$$

Radial distribution function

$$
P_{r}=\Psi^{2} 4 \pi r^{2}
$$

Most probable radius:

$$
\begin{aligned}
\frac{d P_{r}}{d r} & =4 \pi\left(1 / \pi a_{0}^{3}\right) \frac{d}{d r}\left(e^{-2 r / a_{0}} r^{2}\right) \\
& =C\left[\frac{d}{d r}\left(e^{-2 r / a_{0}}\right) r^{2}+e^{-2 r / a_{0}} \frac{d}{d r} r^{2}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =C\left[-\frac{2 r^{2}}{a_{0}} e^{-2 r / a_{0}}+2 r e^{-2 r / a_{0}}\right] \\
& =C\left[-\frac{2 r^{2}}{a_{0}}+2 r\right] e^{-2 r / a_{0}}
\end{aligned}
$$

at maximum when

$$
-2 r^{2} / a_{0}+2 r=0, \quad \text { or } \quad r=a_{0}
$$

n s wavefunction has $n-1$ nodes.

$$
\Psi_{2 s}=\left(\frac{1}{8 \pi a_{0}^{3}}\right)^{1 / 2}\left(2-\frac{r}{a_{0}}\right) e^{-r / 2 a_{0}}=0
$$

It has 1 node at $r=2 a_{0}$
porbitals ($l=1$)
Zero at $r=0$ and non-spherical.
Three degenerate p orbitals ($m_{l}=0, \pm 1$):
For $m_{l}=0, p_{z}$

$$
\Psi_{0} \propto f(r) \cos \theta=r \cos \theta f^{\prime}(r)=z f^{\prime}(r)
$$

For $m_{l}= \pm 1$,
$p_{+1}: \quad \Psi_{+1} \propto f(r) \sin \theta e^{i \phi}$
$p_{-1}: \quad \Psi_{+1} \propto f(r) \sin \theta e^{-i \phi}$
Linear combinations:
$p_{x}: \quad \Psi_{x} \propto \Psi_{+1}+\Psi_{-1}=f(r) \sin \theta\left(e^{i \phi}+e^{-i \phi}\right)$ $=f^{\prime}(r) \sin \theta \cos \phi$
$=r \sin \theta \cos \phi f^{\prime \prime}(r)=x f^{\prime \prime}(r)$
$p_{y}: \quad \Psi_{y} \propto \Psi_{+1}-\Psi_{-1}=f(r) \sin \theta\left(e^{i \phi}-e^{-i \phi}\right)$ $=y f^{\prime \prime}(r)$

Each p orbital has a nodal plane where $\Psi=0$.
d orbitals ($l=2$)
There are five d orbitals ($m_{l}=0, \pm 1, \pm 2$).
Spectral transition and selection rules
Spectrum: recording of transitions between states.

$$
h v=\left|E_{2}-E_{1}\right|
$$

Not all transitions are allowed

Selection rules for hydrogenic atoms:

$$
\Delta l= \pm 1, \quad \Delta m_{l}=0, \pm 1
$$

Angular momentum conservation law $\left(J_{\text {phooon }}=1 \hbar\right)$
$\begin{array}{lll}\text { Example: } & 1 \mathrm{~s} \rightarrow 2 \mathrm{~s}, & \Delta l=0, \text { forbidden } \\ & 1 \mathrm{~s} \rightarrow 2 \mathrm{p}_{\mathrm{z}}, & \Delta l=1, \Delta m_{l}=0 \text {, allowed } \\ & 3 \mathrm{~d} \rightarrow 5 \mathrm{~s}, & \Delta l=-2, \text { forbidden } \\ & 5 \mathrm{~s} \rightarrow 2 \mathrm{p}, & \Delta l=1 \text {, allowed }\end{array}$

II. Atomic units

Action: $\quad \hbar=1$
Mass: $\quad m_{e}=1$
Charge: $\quad q_{e}=\frac{e}{\sqrt{4 \pi \varepsilon_{0}}}=1$
Length: $\quad a_{0}=\frac{4 \pi \varepsilon_{0} \hbar^{2}}{m_{e} e^{2}}=1 \mathrm{bohr}$
Energy: $-2 E_{1 s}(H)=27.211 \mathrm{eV}=1$ hartree $\left(E_{h}\right)$
Time: $\quad 2.42 \times 10^{-17} \mathrm{~s}=0.0242 \mathrm{fs}=1$ atu
H-atom Hamiltonian:

$$
\hat{H}=-\frac{1}{2} \nabla^{2}-\frac{Z}{r}
$$

III. Structure of many-electron atoms

Helium atom

Hamiltonian ($\hbar=1$)

$$
\begin{equation*}
\hat{H}=-\frac{1}{2}\left(\nabla_{1}^{2}+\nabla_{2}^{2}\right)-\frac{Z}{r_{1}}-\frac{Z}{r_{2}}+\frac{1}{r_{12}} \tag{Z=2}
\end{equation*}
$$

No analytical solution for $\hat{H} \Psi=E \Psi$.
$0^{\text {th }}$ order approximation:

$$
\begin{aligned}
& \hat{H}_{0}=\hat{h}_{1}+\hat{h}_{2} \\
& \left|\psi^{0}\right\rangle=\left|n_{1} l_{1} m_{1}\right\rangle\left|n_{2} l_{2} m_{2}\right\rangle \\
& E^{0}=-\frac{Z^{2}}{2 n_{1}^{2}}-\frac{Z^{2}}{2 n_{2}^{2}} \quad(\hbar=1)
\end{aligned}
$$

For the ground state, $E^{0}=-4$ hartree. Bad approximation of the exact result of -2.904 hartree, due to ignoring $1 / r_{12}$.

Including $1^{\text {st }}$ order perturbation:

$$
E=-4+\left\langle\psi^{0}\right| \frac{1}{r_{12}}\left|\psi^{0}\right\rangle=-4+\frac{5}{8} 2=-2.75 \text { hartree }
$$

Variational treatment:

Trial wavefunction (ground state):

$$
|\psi\rangle=\sqrt{\frac{\lambda^{3}}{\pi}} e^{-\lambda r_{1}} \sqrt{\frac{\lambda^{3}}{\pi}} e^{-\lambda r_{2}}
$$

where $\lambda=Z-\sigma$ is effective charge with σ as shielding factor.

$$
E=\frac{\langle\psi| \hat{H}|\psi\rangle}{\langle\psi \mid \psi\rangle}=-\lambda^{2}-2(Z-\lambda) \lambda+\frac{5 \lambda}{8}
$$

Varying λ :

$$
\frac{d E}{d \lambda}=-2 \lambda-2 Z+4 \lambda+\frac{5}{8}=0
$$

that is

$$
\lambda=Z-\frac{5}{16}
$$

and

$$
\begin{equation*}
E=-\left(Z-\frac{5}{16}\right)^{2}=-2.85 \text { hartree } \tag{Z=2}
\end{equation*}
$$

In multi-electron atoms, the nuclear Coulomb field exerted on an electron is shielded by other electrons.

Pauli exclusion principle

Electrons are indistinguishable Fermions that carry spins ($s=1 / 2$). There are two types of spins corresponding to $m_{s}= \pm 1 / 2$:

$$
\begin{aligned}
& |\alpha\rangle=\left|s, m_{s}\right\rangle=\left|\frac{1}{2}, \frac{1}{2}\right\rangle \\
& |\beta\rangle=\left|s, m_{s}\right\rangle=\left|\frac{1}{2},-\frac{1}{2}\right\rangle
\end{aligned}
$$

with

$$
\begin{aligned}
& \hat{S}^{2}\left|s, m_{s}\right\rangle=s(s+1) \hbar^{2}\left|s, m_{s}\right\rangle=\frac{3}{4} \hbar^{2}\left|s, m_{s}\right\rangle \\
& \hat{S}_{z}\left|s, m_{s}\right\rangle=m_{s} \hbar\left|s, m_{s}\right\rangle= \pm \frac{1}{2} \hbar\left|s, m_{s}\right\rangle
\end{aligned}
$$

Pauli principle:
For Fermions, the wavefunction is antisymmetric under exchange.

Exchange operator:

$$
\hat{X}_{12}\left|\phi\left(x_{1}, x_{2}\right)\right\rangle=\left|\phi\left(x_{2}, x_{1}\right)\right\rangle
$$

Antisymmetry:

$$
\hat{X}_{12}\left|\phi\left(x_{1}, x_{2}\right)\right\rangle=\left|\phi\left(x_{2}, x_{1}\right)\right\rangle=-\left|\phi\left(x_{1}, x_{2}\right)\right\rangle
$$

Possible He ground state wavefunctions:

$$
\begin{aligned}
& \left|\psi_{1}\right\rangle=|1 s(1)\rangle|1 s(2)\rangle|\alpha(1)\rangle|\alpha(2)\rangle=|1 s 1 s\rangle|\alpha \alpha\rangle \\
& \left.\psi_{2}\right\rangle=|1 s(1)\rangle|1 s(2)\rangle|\alpha(1)\rangle|\beta(2)\rangle=|1 s 1 s\rangle|\alpha \beta\rangle \\
& \left.\psi_{3}\right\rangle=|1 s(1)\rangle|1 s(2)\rangle|\beta(1)\rangle|\alpha(2)\rangle=|1 s 1 s\rangle|\beta \alpha\rangle \\
& \left.\psi_{4}\right\rangle=|1 s(1)\rangle|1 s(2)\rangle|\beta(1)\rangle|\beta(2)\rangle=|1 s 1 s\rangle|\beta \beta\rangle
\end{aligned}
$$

We note that

$$
\hat{X}_{12}\left|\psi_{1}\right\rangle=\left|\psi_{1}\right\rangle, \quad \hat{X}_{12}\left|\psi_{4}\right\rangle=\left|\psi_{4}\right\rangle
$$

so they violate Pauli principle and are not allowed.
To construct allowed wavefunctions, we use the projection operator $\left(1-\hat{X}_{12}\right) / \sqrt{2}$ to antisymmetrize:

$$
\begin{aligned}
\left|\psi_{1}^{\prime}\right\rangle & =\frac{1}{\sqrt{2}}\left(1-\hat{X}_{12}\right)\left|\psi_{1}\right\rangle=0 \\
\left|\psi_{2}^{\prime}\right\rangle & =\frac{1}{\sqrt{2}}\left(1-\hat{X}_{12}\right)\left|\psi_{2}\right\rangle=\frac{1}{\sqrt{2}}\left(\left|\psi_{2}\right\rangle-\left|\psi_{3}\right\rangle\right) \\
& =\frac{1}{\sqrt{2}}|1 s 1 s\rangle(|\alpha \beta\rangle-|\beta \alpha\rangle) \\
\left|\psi_{3}^{\prime}\right\rangle & =\frac{1}{\sqrt{2}}|1 s 1 s\rangle(|\beta \alpha\rangle-|\alpha \beta\rangle)=-\left|\psi_{2}^{\prime}\right\rangle \\
\left|\psi_{4}^{\prime}\right\rangle & =0
\end{aligned}
$$

Indeed, the antisymmetrized wavefunctions satisfy the Pauli principle:

$$
\begin{aligned}
& \hat{X}_{12} \frac{1}{\sqrt{2}}|1 s 1 s\rangle(|\alpha \beta\rangle-|\beta \alpha\rangle) \\
&=\frac{1}{\sqrt{2}}|1 s 1 s\rangle(|\beta \alpha\rangle-|\alpha \beta\rangle) \\
&=-\frac{1}{\sqrt{2}}|1 s 1 s\rangle(|\alpha \beta\rangle-|\beta \alpha\rangle)
\end{aligned}
$$

There are two electrons in the 1s orbital with opposite spins!
Total spin:

$$
\begin{aligned}
\hat{S}^{2}|\psi\rangle & =\left(\hat{S}_{1}+\hat{S}_{2}\right)^{2}|\psi\rangle \\
& =\left[\hat{S}_{1}^{2}+\hat{S}_{2}^{2}+2\left(\hat{S}_{1 z} \hat{S}_{2 z}+\hat{S}_{1 y} \hat{S}_{2 y}+\hat{S}_{1 x} \hat{S}_{2 x}\right)\right]|\psi\rangle \\
& \left.=\left[\hat{S}_{1}^{2}+\hat{S}_{2}^{2}+2 \hat{S}_{1 z} \hat{S}_{2 z}+\hat{S}_{1+} \hat{S}_{2-}+\hat{S}_{1-} \hat{S}_{2+}\right)\right]|\psi\rangle \\
& =\left[\frac{1}{2}\left(\frac{1}{2}+1\right)+\frac{1}{2}\left(\frac{1}{2}+1\right)-2 \frac{1}{2} \frac{1}{2}-1\right] \hbar^{2}|\psi\rangle \\
& =S(S+1) \hbar^{2}|\psi\rangle=0 \\
\hat{S}_{z}|\psi\rangle & =\left(\hat{S}_{1 z}+\hat{S}_{2 z}\right)|\psi\rangle=M_{s} \hbar|\psi\rangle=0
\end{aligned}
$$

which corresponds to $S=M_{\mathrm{s}}=0$, or a singlet state. In deriving the above results, we have used

$$
\begin{aligned}
& 2\left(\hat{S}_{1 y} \hat{S}_{2 y}+\hat{S}_{1 x} \hat{S}_{2 x}\right) \\
& \quad=\left(\hat{S}_{1 x}+i \hat{S}_{1 y}\right)\left(\hat{S}_{2 x}-i \hat{S}_{2 y}\right)+\left(\hat{S}_{1 x}-i \hat{S}_{1 y}\right)\left(\hat{S}_{2 x}+i \hat{S}_{2 y}\right) \\
& \quad=\hat{S}_{1+} \hat{S}_{2-}+\hat{S}_{1-} \hat{S}_{2+} \\
& \left(\hat{S}_{1+} \hat{S}_{2-}+\hat{S}_{1-} \hat{S}_{2+}\right)(|\alpha \beta\rangle-|\beta \alpha\rangle) \\
& \quad=-\hbar(|\alpha \beta\rangle-|\beta \alpha\rangle)
\end{aligned}
$$

Excited state He:

Antisymmetrization of possible wavefunctions:

$$
\begin{aligned}
& \left|\psi_{1}\right\rangle=|1 s 2 s\rangle|\alpha \alpha\rangle \\
& \left|\psi_{2}\right\rangle=|1 s 2 s\rangle|\alpha \beta\rangle \\
& \left|\psi_{3}\right\rangle=|1 s 2 s\rangle|\beta \alpha\rangle \\
& \left|\psi_{4}\right\rangle=|1 s 2 s\rangle|\beta \beta\rangle
\end{aligned}
$$

yields:

$$
\begin{aligned}
& \left.\left|\psi_{1}^{\prime}\right\rangle=\frac{1}{\sqrt{2}}|\alpha \alpha\rangle(1 s 2 s\rangle-|2 s 1 s\rangle\right) \\
& \left|\psi_{2}^{\prime}\right\rangle=\frac{1}{\sqrt{2}}(|1 s 2 s\rangle|\alpha \beta\rangle-|2 s 1 s\rangle|\beta \alpha\rangle) \\
& \left|\psi_{3}^{\prime}\right\rangle=\frac{1}{\sqrt{2}}(|1 s 2 s\rangle|\beta \alpha\rangle-|2 s 1 s\rangle|\alpha \beta\rangle) \\
& \left|\psi_{4}^{\prime}\right\rangle=\frac{1}{\sqrt{2}}|\beta \beta\rangle(|1 s 2 s\rangle-|2 s 1 s\rangle)
\end{aligned}
$$

The total spin:

$$
\begin{array}{ll}
\hat{S}^{2}|\alpha \alpha\rangle=2 \hbar^{2}|\alpha \alpha\rangle & (S=1) \\
\hat{S}_{z}|\alpha \alpha\rangle=\hbar|\alpha \alpha\rangle & \left(M_{s}=1\right) \\
\hat{S}^{2}|\beta \beta\rangle=2 \hbar^{2}|\beta \beta\rangle & (S=1) \\
\hat{S}_{z}|\beta \beta\rangle=-\hbar|\beta \beta\rangle & \left(M_{s}=-1\right)
\end{array}
$$

but $\left|\psi_{2}^{\prime}\right\rangle$ and $\left|\psi_{3}^{\prime}\right\rangle$ are not eigenfunctions of \hat{S}^{2}.
Linear combination of the two yields:

$$
\begin{aligned}
& \left|\psi_{2}^{\prime \prime}\right\rangle=\frac{1}{2}(|1 s 2 s\rangle+|2 s 1 s\rangle)(|\alpha \beta\rangle-|\beta \alpha\rangle) \\
& \left|\psi_{3}^{\prime \prime}\right\rangle=\frac{1}{2}(|1 s 2 s\rangle-|2 s 1 s\rangle)(|\alpha \beta\rangle+|\beta \alpha\rangle)
\end{aligned}
$$

and

$$
\begin{align*}
& \hat{S}^{2}(|\alpha \beta\rangle-|\beta \alpha\rangle)=2 \hbar^{2}(|\alpha \beta\rangle-|\beta \alpha\rangle) \tag{S=1}\\
& \hat{S}_{z}(|\alpha \beta\rangle-|\beta \alpha\rangle)=0 \tag{s}\\
& \hat{S}^{2}(|\alpha \beta\rangle+|\beta \alpha\rangle)=0 \tag{S=0}\\
& \hat{S}_{z}(|\alpha \beta\rangle+|\beta \alpha\rangle)=0 \tag{s}
\end{align*}
$$

So, excited He has two configurations:
Singlet excited state ($S=0, M_{\mathrm{s}}=0$):

$$
\frac{1}{2}(|1 s 2 s\rangle+|2 s 1 s\rangle)(|\alpha \beta\rangle-|\beta \alpha\rangle)
$$

Triplet excited state ($S=1, M_{s}=0, \pm 1$):

$$
\left.\frac{1}{\sqrt{2}}(1 s 2 s\rangle-|2 s 1 s\rangle\right)\left\{\begin{array}{c}
|\alpha \alpha\rangle \\
|\beta \beta\rangle \\
\frac{1}{\sqrt{2}}(|\alpha \beta\rangle+|\beta \alpha\rangle)
\end{array}\right.
$$

Energy of triplet:

$$
\begin{aligned}
E & =\frac{1}{2}\langle\alpha \alpha|(\langle 1 s 2 s|-\langle 2 s 1 s|) \hat{H}(|1 s 2 s\rangle-|2 s 1 s\rangle)|\alpha \alpha\rangle \\
& =\frac{1}{2}(\langle 1 s 2 s| \hat{H}|1 s 2 s\rangle+\langle 2 s 1 s| \hat{H}|2 s 1 s\rangle \\
& -\langle 1 s 2 s| \hat{H}|2 s 1 s\rangle-\langle 2 s 1 s| \hat{H}|1 s 2 s\rangle) \\
& =\langle 1 s 2 s| \hat{H}|1 s 2 s\rangle-\langle 1 s 2 s| \hat{H}|2 s 1 s\rangle
\end{aligned}
$$

Note $\hat{H}=\hat{h}_{1}+\hat{h}_{2}+1 / r_{12}$,

$$
\begin{aligned}
E & =\langle 1 s 2 s| \hat{h}_{1}+\hat{h}_{2}+\frac{1}{r_{12}}|1 s 2 s\rangle-\langle 1 s 2 s| \hat{h}_{1}+\hat{h}_{2}+\frac{1}{r_{12}}|2 s 1 s\rangle \\
& =E_{1 s}+E_{2 s}+J_{1 s 2 s}-K_{1 s 2 s}
\end{aligned}
$$

because

$$
\begin{aligned}
& \langle 1 s 2 s| \hat{h}_{1}+\hat{h}_{2}|1 s 2 s\rangle=E_{1 s}+E_{2 s} \\
& \langle 1 s 2 s| \hat{h}_{1}+\hat{h}_{2}|2 s 1 s\rangle=0
\end{aligned}
$$

The coulomb integral:

$$
J_{1 s 2 s}=\langle 1 s 2 s| \frac{1}{r_{12}}|1 s 2 s\rangle
$$

which is repulsion between 1s and 2s electrons, always positive.
The exchange integral:

$$
K_{1 s 2 s}=\langle 1 s 2 s| \frac{1}{r_{12}}|2 s 1 s\rangle
$$

which is due to exchange antisymmetry, mostly positive.
For singlet excited state:

$$
E_{S}=E_{1 s}+E_{2 s}+J_{1 s 2 s}+K_{1 s 2 s}
$$

Singlet excited state has higher energy than triplet, as spatial wave function of triplet is antisymmetric. (Hund's rule)

Many-electron atoms

$$
\hat{H}=-\frac{1}{2} \sum_{i} \nabla_{i}^{2}-\sum_{i} \frac{Z}{r_{i}}+\sum_{i} \sum_{j>i} \frac{1}{r_{i j}}
$$

Hartree approximation: express total spatial wave function as product of orbitals:

$$
|\Psi(1,2, \ldots N\rangle=| \psi(1)\rangle \psi(2)\rangle \ldots \psi(N)\rangle
$$

It ignores the spins and correlations between electrons.

Hartree-Fock approximation: Hartree+antisymmetrization

Slater determinants always satisfy Pauli principle.

$$
\begin{array}{rlll}
|\Psi\rangle & =\frac{1}{\sqrt{N!}}\left|\begin{array}{cll}
\left|\chi_{1}(1)\right\rangle & \left|\chi_{2}(1)\right\rangle & \ldots \\
\left|\chi_{1}(2)\right\rangle & & \left|\chi_{N}(1)\right\rangle \\
\ldots & & \\
\left|\chi_{1}(N)\right\rangle & & \\
& =\left|\chi_{1}(N)\right\rangle
\end{array}\right|
\end{array}
$$

where $|\chi\rangle$ contain both spin and orbital parts and is called a spin-orbital.

Pauli principle: no two electrons can occupy the same spinorbital.

Slater determinants may not be eigenfunction of \hat{S}.

He triplet ($M_{\mathrm{s}}=1$):

$$
\begin{aligned}
|\Psi\rangle & =\frac{1}{\sqrt{2}}\left|\begin{array}{cc}
|1 s(1)\rangle \alpha(1)\rangle & |2 s(1)\rangle|\alpha(1)\rangle \\
|1 s(2)\rangle|\alpha(2)\rangle & |2 s(2)\rangle|\alpha(2)\rangle
\end{array}\right| \\
& \left.=\frac{1}{\sqrt{2}}[1 s(1)\rangle|\alpha(1)\rangle|2 s(2)\rangle|\alpha(2)\rangle-|2 s(1)\rangle|\alpha(1)\rangle|1 s(2)\rangle|\alpha(2)\rangle\right] \\
& \left.=\frac{1}{\sqrt{2}}|\alpha(1)\rangle\langle\alpha(2)\rangle[1 s(1)\rangle|2 s(2)\rangle-|2 s(1)\rangle|1 s(2)\rangle\right]
\end{aligned}
$$

Abbreviations:

$$
|\Psi\rangle=\left|\begin{array}{ll}
1 s & 2 s
\end{array}\right|
$$

Be ground state $\left(1 s^{2} 2 s^{2}\right)$:

$$
|\Psi\rangle=|1 s \quad \overline{1 s} \quad 2 s \quad \overline{2 s}|
$$

where the bar stands for a β electron.
Hartree-Fock equations (close-shell singlet):

$$
\hat{F}_{i}\left|\chi_{i}\right\rangle=\varepsilon_{i}\left|\chi_{i}\right\rangle
$$

which are single electron equations for the spin-orbitals. The Fock operator is an effective Hamiltonian:

$$
\hat{F}_{i}=-\frac{1}{2} \nabla_{i}^{2}-\frac{Z}{r_{i}}+\sum_{j=1}^{N}\left[2 \hat{J}_{j}(i)-\hat{K}_{j}(i)\right]
$$

averaged over all other electrons. The Coulomb and exchange operators are defined in terms of the corresponding integrals:

$$
\begin{aligned}
& \hat{J}_{j}\left|\chi_{i}(1)\right\rangle=\left\{\left\langle\chi_{j}(2)\right| \frac{1}{r_{12}}\left|\chi_{j}(2)\right\rangle\right\}\left|\chi_{i}(1)\right\rangle \\
& \hat{K}_{j}\left|\chi_{i}(1)\right\rangle=\left\{\left\langle\chi_{j}(2)\right| \frac{1}{r_{12}}\left|\chi_{i}(2)\right\rangle\right\}\left|\chi_{j}(1)\right\rangle
\end{aligned}
$$

The solution must be solved iteratively using the self-consistend field (SCF) approach, because the Fock operator depends on the spin-orbitals.

H-F energy:

$$
E=2 \sum_{i=1}^{N} \varepsilon_{i}-\sum_{i, j=1}^{N}\left(2 J_{i j}-K_{i j}\right)
$$

Koopmans' theorem:

- Ionization energy is approximately the energy of the highest occupied orbital: $I \approx-\varepsilon_{H}$
- Electron affinity is approximately the energy of the lowest unoccupied orbital: $\quad E A \approx-\varepsilon_{L}$

It is only an approximation because of electrons relaxation.

Electron correlation:

H-F approximation assumes single electron motion in a mean field generated by other electrons. It thus ignores the correlation between electrons.

Correlation energy:

$$
E_{\text {corr }}=E_{\text {exact }}-E_{H F}
$$

Usually small, but can be very important, can be taken into account using variational or perturbative methods.

Relativistic contributions

- spin is a relativistic effect, its contribution comes in the form of spin-orbit coupling
- often large in heavy atoms as electrons moves very fast, approaching the speed of light.

Building-up (Aufbau) principle:

Electronic configuration of an atom can be determined by the following rules:
i. Orbital ordering: Because of shelding $\left(Z_{e f f}=Z-\sigma\right)$, the atomic orbitals are not degenerate and have the following energy order:

1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, ...
σ is the shielding constant, $\quad s<p<d$.
ii. Pauli exclusion principle
$2 \mathrm{e}^{-}$may occupy one orbital with opposite spins (α and β).
iii. Double occupancy rule

Electrons occupy different orbitals of a given subshell before doubly occupying any one of them.

Carbon atom ($6 \mathrm{e}^{-}$): $[\mathrm{He}] 2 \mathrm{~s}^{2} 2 \mathrm{p}^{1} 2 \mathrm{p}^{1} \quad$ (an open shell atom).
Valence electrons: outmost shell e-, 2s, 2p for C Core electrons: inner shell e-
iv. Hund's rule (spin)

Unpaired electrons tend to have parallel spins. (spin correlation)
The $2 \mathrm{pe}^{-}$in C have parallel sping $\alpha \alpha(\beta \beta)$.
Oxygen atom (8 e^{-})

$$
[\mathrm{He}] 2 \mathrm{~s}^{2} 2 \mathrm{p}^{2} 2 \mathrm{p}^{1} 2 \mathrm{p}^{1} \quad \alpha \alpha \text { or } \beta \beta
$$

III Atomic spectra

An electronic configuration may give several states. Each state is represented by a term symbol:

$$
{ }^{25+1} L_{J}
$$

Total orbital angular momentum L of an atom

$$
\boldsymbol{L}=\boldsymbol{I}_{1}+\boldsymbol{I}_{2}+\ldots \quad \text { (vector sum) }
$$

For a two-electron atom

$$
L=\left|l_{1}-l_{2}\right|,\left|l_{1}-l_{2}\right|+1, \ldots, l_{1}+l_{2} \quad \text { (Clebsch-Gordan series) }
$$

Code of L :

$$
\begin{array}{lllllll}
L: & 0 & 1 & 2 & 3 & 4 & \ldots \\
& \mathrm{~S} & \mathrm{P} & \mathrm{D} & \mathrm{~F} & \mathrm{G} & \ldots
\end{array}
$$

Example: L for $3 p^{1} 3 \mathrm{~d}^{1}$.

$$
l_{1}=1 \text { and } l_{2}=2 .
$$

so $\quad L=1,2,3$ or three terms P, D, F
Total spin angular momentum \boldsymbol{S} of an atom

$$
\boldsymbol{S}=s_{1}+s_{2}+\ldots
$$

For a two-electron atom

$$
S=\left|s_{1}-s_{2}\right|,\left|s_{1}-s_{2}\right|+1, \ldots, s_{1}+s_{2}
$$

The multiplicity is $2 S+1$

Example: S for a two e^{-}atom.

$$
s_{1}=1 / 2, s_{2}=1 / 2
$$

so $S=0,1$, or multiplicity = 1 (singlet), 3 (triplet).
Total angular momentum (Russell-Saunders coupling)

$$
\boldsymbol{J}=\boldsymbol{L}+\boldsymbol{S}
$$

or

$$
J=|L-S|,|L-S|+1, \ldots, L+S
$$

Examples: Ground and excited state $\mathrm{Na},[\mathrm{Ne}] 3 \mathrm{~s}^{1},[\mathrm{Ne}] 3 \mathrm{p}^{1}$.
Single electron (ignore inner e^{-}), $l=0, s=1 / 2$,
$L=0, \quad S=1 / 2(2 S+1=2), \quad J=1 / 2$
So the ground state term is ${ }^{2} \mathrm{~S}_{1 / 2}$
$L=1, \quad S=1 / 2(2 S+1=2), \quad J=1 / 2,3 / 2$
So the term are ${ }^{2} \mathrm{P}_{1 / 2}$ and ${ }^{2} \mathrm{P}_{3 / 2}$.
Excited state of Na splits to 2 sublevels because of the interaction between spin and orbital angular momenta (spin-orbit coupling, a relativistic effect)

Energy

$$
E_{L, S, J}=(1 / 2) h c A[J(J+1)-L(L+1)-S(S+1)]
$$

A is the coupling constant that increases with $\sim Z^{4}$, so spin-orbit coupling becomes more important for heavy atoms.

Splitting:

$$
\begin{aligned}
\Delta \tilde{v}=\frac{\Delta E}{h c} & =\frac{1}{2} A\left[J(J+1)-J^{\prime}\left(J^{\prime}+1\right)\right] \\
& =\frac{1}{2} \times 17.2 \mathrm{~cm}^{-1}\left[\frac{3}{2}\left(\frac{3}{2}+1\right)-\frac{1}{2}\left(\frac{1}{2}+1\right)\right]=11.5 \mathrm{~cm}^{-1}
\end{aligned}
$$

Selection rules

$$
\begin{aligned}
& \Delta S=0 \\
& \Delta L=0, \pm 1 \text { with } \Delta l= \pm 1 \\
& \Delta J=0, \pm 1 \text { but } J=0 \text { cannot combine with } J=0
\end{aligned}
$$

Fine structure of the Na D lines

$$
\begin{aligned}
& { }^{2} \mathrm{~S}_{1 / 2} \rightarrow{ }^{2} \mathrm{P}_{1 / 2},{ }^{2} \mathrm{P}_{3 / 2} \\
& \Delta S=0, \Delta L=1, \Delta J=0,1 \quad \text { (allowed) }
\end{aligned}
$$

