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Chapter 6, Introduction of molecular orbital theory 
 
I. Homonuclear diatoms 
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Born-Oppenheimer approximation: 
 
 )():(),( RRrRr ϕψ=Ψ  
 
Substituting to Ψ=Ψ EĤ  and ignore the action of nT̂  on 

):( Rrψ , we have 
 
 ):()():(]ˆ[ RrRRr ψψ eene EVT =+  (electronic) 
 
 )()()](ˆ[ RRR ϕϕ EEVT ennn =++  (nuclear) 
 
Because of the small mass of an electron, it can respond 
instantaneously to change of nuclear coordinates.  
 
In B-O approximation, electronic Schrödinger equation is 
solved at a fixed nuclear framework. The nuclei Schrödinger 
equation is solved with potential energy surface 
( enn EVV += ). 
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LCAO-MO: 
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H2

+ 

 
 bbaa scsc 11 +=Ψ  
 
Schrödinger Eq. for enee VTH += ˆˆ  
 
 Ψ=Ψ EHe

ˆ  
 
Multiplying as1  on the left and integrate: 
 
 babababaaa EcSEccHcH +=+  
 
similarly with bs1 , 
 
 baabbbbaab EccEScHcH +=+  
 
in which the Hamiltonian and overlap matrix elements are 
 
 aeaaa sHsH 1ˆ1=   bebbb sHsH 1ˆ1=  
 
 babeaab HsHsH == 1ˆ1  
 
 babaab SssS == 11  
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Matrix form: 
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Solution of coupled linear equations: 
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The same equations can be obtained by variational principle.  
 
For homonuclear diatoms, α== bbaa HH , β=abH , SSab =  
 
 0)()( 22 =−−− ESE βα  
 
Solution: 
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+Ψ , −Ψ  have 0 and 1 node, respectively. 
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Bonding and antibonding MOs 
 
   ]11[ ba ssN −=Ψ −−  
 
 as1         bs1  
 
   ]11[ ba ssN +=Ψ ++  
 
Bonding MO has extra e-density between nuclei (constructive 
interference). It lowers the energies of the AOs. 
 
 )]11(211[ 222

baba ssssNP ++= ++  
 
Antibonding MO has node (destructive interference). It raises 
the energies of AOs. 
 
 )]11(211[ 222

baba ssssNP −+= −−  
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Let’s take a closer look at the energy: 
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Let’s define the atomic energy first 
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we have 
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The Coulumb integral represents electrostatic interaction 
between the A electron and B nucleus (always >0):  
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and the exchange integral stems from the LCAO assumption 
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and is a quantum mechanical effect. K is usually negative and 
responsible for the binding energy. 
 
 Thus, chemical bond is a quantum mechanical 
phenomenon. 
 
 Substituting the normalization factor, we reach 
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Comparing with the energy expression earlier, it is easy to see 
 
 JE s += 1α , and KSE s += 1β  
 
The relative energy becomes: 
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KJEEE s +
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For the antibonding orbital 
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The integrals can be obtained analytically for H2

+: 
 
 ( )3/1 2RReS R ++= −  
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R
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Potential energy curve: 
 
 
 
 
 
 
Labeling MOs by λ (projection of angular momentum on 
internuclear distance): 
 
 || m=λ    0, 1, 2, … 
 Symbol:   σ, π, δ, … 
 
For 1s AOs, 0=λ ; and we have σ MOs. 
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For homonuclear diatoms:, the MOs can be further labels by 
parity (inversion symmetry).  
 
  +Ψ    −Ψ  
parity: gerade  ungerade 
  gσ    uσ  
 
MO energy level diagram: 
 
2nd period homonuclear diatoms: 
 
Core electrons do not participate in bonding. 
 
        3 uσ  
    2 uσ       1 gπ  
 
2s   2s   2p    2p 
         
    2 gσ       1 uπ  
        3 gσ  
 
Electronic configuration determined by Aufbau principle: 

H2
+, 1 1

gσ  
 
H

2
, 1

2
gσ , spin paired (Pauli principle),  

Bond order = (# bonding e- - antibonding e-)/2 
   = (2-0)/2 = 1, single bond.  
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He
2
, 1 2

gσ 1 2
uσ , unstable, energy gained in gσ  offset by energy 

loss in uσ , bond order = 0 
 
Li2, 2 2

gσ , single bond. 
 

HOMO: highest occupied MO (2 gσ ) 

LUMO: lowest unoccupied MO (2 uσ ). 
 
These orbitals are called frontier orbitals and largely responsible 
for chemical and spectroscopic properties of the molecule. 
 
N

2
, 2 2

gσ 2 2
uσ 1 4

uπ 3 2
gσ , 

Extremely stable because of 6 bonding e- (triple bond). 
Because of interaction with 2 uσ , 3 gσ  higher than 1 uπ . 
 
O

2
, 2 2

gσ 2 2
uσ 3 2

gσ 1 4
uπ 1 2

gπ , two top electrons unpaired (Hund’s 
rule), paramagnetic. 
 
 
Term symbol of a molecular state: 
 
 reflection

parity
S Λ+12  

 

S: total spin 
Λ:  total orbital angular momentum on the molecular axis 
 Σ, Π, Δ,... for Λ= 0, 1, 2, ... 

Determined by occupied MOs 
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Overall parity:  
 

 g × g = g,  u ×  u =g,   u ×  g = u 
 

Reflection symmetry:  
 

 + ×  - = -,  + ×  + = +,   - ×  - = + 
 

+/-: behavior of MO under the reflection of a plane containing 
the nuclei. 
   gσ   uσ   uπ   gπ  
 
 
 
reflection   +  +   -  - 
 
H

2

+, 1 1
gσ , Λ = 0 (Σ), S = 1/2, 2S+1 = 2 (doublet), parity = g, 

reflection = +, so term symbol: +Σg
2  

 
H

2
, 1

2
gσ , Λ = 0 (Σ), S = 0, 2S+1 = 1 (singlet), parity = g (g × g), 

reflection = + (+×+), so: +Σg
1  

 
II. Heteronuclear diatoms 
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Assuming: 

 aaaH α= , bbbH α= , β=abH ,  0=abS  
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Solution can be expressed in terms of ζ: 
 
 tanaE α β ζ+ = +   
 tanbE α β ζ− = −  
 
where  
  

 
2

tan 2
b a

β
ζ

α α
=

−
 

 
ΔE of two AOs ( b aα α− ) determines the strength of MO.  
 
Example: H-F bond 

Energies (α) of AOs:  H1s: -13.6 eV,  F2p: -18.6 eV 
 
Assume β = -1.0 eV,  ζ = 10.9o, 
 

E+ =  -18.6 - 1.0 tan(10.9o) = -18.8 eV 
 

E-  =  -13.6 + 1.0 tan(10.9o) = -13.4 eV 
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III. Walsh diagram 
 
Let’s look at H2A system. 
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At linear geometry      At bent geometry 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Walsh diagram 
 
 
 
 
 
 
Explains why BeH2 is linear and H2O is bent. 



 13

IV. Hückel theory 

π system in conjugated molecules (alternating single and double 
bonds), such as CH2=CH-CH=CH2, benzene, etc. 
 
Hückel approximation: 
 
i. Only π MOs are treated and molecular frame is fixed by σ 
bonds. 

ii. Coulomb integrals (α) are set equal. 

iii. Overlap integrals (S) are set to zero. 

iv. Resonance integrals (β) are equal for neighbors, but zero for 
non-neighbors. 
 
Ethene: 
 

 0=
−

−
E

E
αβ

βα
  

 
Orbital energies  

 E = α ± β 
 
Total energy (π electrons) is 

 E = 2(α + β) = 2α + 2β      (no extra stabilization) 
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Butadiene: CH2=CH-CH=CH2 
 

0
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βαβ
βα

         

 
Energies are  

 E = α ± 1.62β,  α ± 0.62β 
 

Total energy: 

 E = 2(α + 1.62β) + 2(α + 0.62β) = 4α + 4.48β 
 Eπ = 4α + 4β 
 

Delocalization energy: extra stabilization energy due to 
delocalization (E - Eπ=0.48β). 
 
Benzene:  
 
    α - E         β           0         0         0         β             
       β        α - E   β         0         0         0            
       0            β       α - E       β         0         0               
       0            0           β      α - E      β         0           
       0            0           0         β       α - E     β 
       β            0           0         0          β      α - E      
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Orbital energies  
 
 E = α ± 2β,  α ± β, α ± β 
 
Total energy  
 
 E = 2(α + 2β) + 4(α + β) 
    = 6α + 8β 
 
Delocalization energy is 2β (app. -150 kJ/mol), aromatic 
stability. 
        
What about C6H6

+? 
 
 E = 2(α + 2β) + 3(α + β) 
    = 5α + 7β 
 
Delocalization energy is 2β. 
 
 
 


