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Chapter 7. Ab initio Theory 
 
Ab initio: from the first principles. 
 
I. Roothaan-Hall approach 
 
Assuming Born-Oppenheimer approximation, the electronic 
Hamiltonian: 
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Wavefunction (Slater determinant): 
 
 Nχχχ ...  21=Ψ  
 
where βαψχ ,⊗= ii  is the MO spin-orbitals. Substituting 
it to the Schrödinger equation leads to the single-electron 
Hartree-Fock eq. 
 
 iiiiF ψεψ =ˆ  
 
where the Fock operator for a close-shell singlet is 
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It is difficult to solve because of its integro-differential nature. 
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Roothaan-Hall equations 
 

 ∑=
=

K
ii c

1ν
νν φψ   (LCAO-MO) 

 

in which νφ  are the atomic basis functions. Substituting back 
to H-F equation, and multiplying μφ  on the left and integrate: 
 

 )()()(ˆ)(
11

iiciFic
K

ii
K

ii νμ
ν

ν
ν

νμν φφεφφ ∑=∑
==

 

 
The overlap matrix 
 
 )()( iiS νμμν φφ=  

 
The Fock matrix: 
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where the Coulomb and exchange integrals: 
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Since the charge density matrix 
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The integrals can be simplified as 
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So, the Fock matrix 
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The matrix form of R-H eq. 
 
 FC=SCE 
 
Roothaan-Hall equation is nonlinear since the Fock matrix 
depends on the LCAO coefficients. In other words, an electron 
experience an average field of other electrons and nuclei. 
Solution: self-consistent field (SCF) 
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• initial guess of single electron field 
• solve R-H eq. for new LCAO coefficients 
• iterate until convergence 

 
SCF Procedure: 
 

i. P from initial guess of LCAO coefficients C. 
 
ii. construct Fock matrix from P and integrals 

 
iii. construct overlap matrix and diagonalize it to obtain S-1/2: 

 

DSUU 1 =−   (D is diagonal) 
 

1// −−− = UUDS 2121 ,  so  ISSS =−− 2/12/1  
 

iv. transform R-H eq. to an eigenequation 
 

SCESFCS 2/12/1 −− =  
 

CESCSFSS 2/12/12/12/1 =−−  
 

ECCF ′=′′ , where  2/12/1 −−=′ FSSF , CSC 2/1=′  
 

v. diagonalizing F′ for energies and coefficients 
 
vi. calculate new P from C. 

 
vii. check convergence to determine if to stop or reiterate. 
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II. Basis sets 
 
The atomic basis used in LCAO can be of Slater or Gauss-type. 
 
Slater-type orbitals (STO): 
 
 ),(1 ϕθφ ζ

llm
rnSTO Yer −−∝  

 
Faithful representation of AOs, but difficult to evaluate integrals. 
 
Gauss-type orbtials (GTO): 
 

 
2rcbaGTO ezyx αφ −=  

 
0th-order GTO: 
 
 

2r
s eg α−∝  

 
1st-order GTOs: 
 
 

2r
x xeg α−∝ , 

2r
y yeg α−∝ , 

2r
z zeg α−∝  

 
2nd-order GTOs: 
 
 ,, ,,,, xzyzxyzzyyxx gggggg    (6) 
 
Lost clear AO characters, but easy for integration as product of 
Gaussians is also a Gaussian. 
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Compromise: 
 
 ∑=

p
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The expansion coefficients and Gaussian exponents are chosen 
to mimic the corresponding STO. These parameters are often 
fixed in contraction. 
 
Types of basis set 
 

i. minimal basis, STO-nG 
 

Use n primitive GTO to fit a STO. 
 
Higher n is not necessarily better. 
 

ii. split-valence or double-zeta basis: 3-21G, 4-31G, 6-31G 
 
1 STO for core orbitals and 2 STOs for valence orbitals 
for better description of chemical bonds. 
 
3-21G: core orbitals with 3 GTOs per STO, valence 
orbitals with 2 contracted GTOs for one STO and 1 GTO 
for a diffuse STO with a different ζ . 
 

iii. triple-zeta basis, 6-311G 
 

1 STO for core orbitals and 3 STOs for valence orbitals. 
 
Higher # of zeta possible 
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iv. polarized functions, 6-31G*, 6-31G** 
 

Adding polarization (p,d,f) functions improves results, 
particularly anisotropy. 
 
6-31G*: DZ+P, add polarization (d) functions to non-H 
atoms. (**: add p to H as well) 
 
6-31G(kp, ld), 6-31G** =(p, d), 
 

v. diffuse functions, 6-31+G, 6-31++G 
 

Adding GTO with very small α improves description of 
weak bonds. 
 
+: add to non-H atoms (++: add to H as well) 
 

Example: 6-311G** for H2O  
 
H:  3 s-type STOs with 5 (311) GTOs, 

3 p-type polarization functions. 
 

O: 1 1s-core STO with 6 GTOs 
3 s-type STOs with 5 (311) GTOs  
9 p-type STOs with 15 (311) GTOs, 
5 d-type polarization functions with 6 primitive GTOs. 

 
total: 30 basis functions, 48 primitive GTOs 
 
Increasing basis set leads to more costly calculations. 
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The Hartree-Fock limit: 
 
As the basis size increases, the electronic energy and geometry 
converge to the Hartree-Fock limit.  
 
The H-F limit: 
• good equilibrium geometry (0.05 Å) 
• 10-15% higher vibrational frequencies (0.89 scaling) 
• dissociation energy and barrier height ~50% or more. 

 
Spin restricted and unrestricted HF 
 
RHF: use one set of MOs for both α and β electrons 
 
May lead to problems with open-shell molecules such as NO 
and O2. 
 
UHF: use two different sets of MO for the α and β electrons. 
 
More general and flexible, but different equation.  
 
More accurate for close-shell molecules as well, particularly at 
dissociation asymptotes. 
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III. Electronic correlation 
 
Because of the mean field approximation, H-F ignores the 
interactions between individual electrons. The energy difference 
is the correlation energy.  
 
 
 
 
 
 
Correlation energy important for quantitative results. 
 
Correlation energy can be captured by either variational or 
perturbative methods 
 
Configuration interaction (CI): 
 
Example: H2, in the 2-MO approximation, two electrons can be 
placed in the following combinations: 
 
 gσ (1) gσ (2), gσ (1) uσ (2), uσ (1) gσ (2), uσ (1) uσ (2) 
 
 
parity: g   u   u   g 
 
CI wavefunction: 
 

 )2()1()2()1( 21 uuggg cc σσσσ +=Ψ  
 

Varying 21,cc  lowers energy. 
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Configuration state functions (CSF): 
 
For K spin-orbitals, the H-F configuration fills the lowest N. 
 
Excited configurations possible by moving e- to higher virtual 
orbitals. 
 
Single excitations: 1 electron is excited. 
 
 Nbp

p
a χχχχχ ......21=Φ  

 
Double excitations: 2 electrons are excited. 
 
 Nqp

pq
ab χχχχχ ......21=Φ  

 

… 
 
Illustration: 
 
 
 
 
 
 
CSF: linearly combined determinants that have correct 
electronic symmetry. 
 
CI wavefunction: 
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The coefficients are variationally determined to lower E. 
Numerically, solving eigenequation 
 
 HC=EC 
 
Note: the MO coefficients are already determined in the H-F 
calculations and fixed in CI. 
 
S/D/T/CI: CI with singles/doubles/triples excitations. SDCI 
preferred. 
 
Full CI: include all CFSs, very expansive ( !/ NK N∝ ) 
 
Problem: size inconsistence, energy and energy error do not 
increase with the size of molecule. 
 
 
 
 
 
CI vs. HF 
 
 
 
 
Multiconfiguration SCF 
 
MCSCF: optimize both MO coefficients and CI coefficients, 
more accurate. 
 
MCSCF-CI: MCSCF followed by CI. 
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CASSCF (complete active space SCF): spin-orbitals divided 
into three classes: 
 

• inactive orbitals: low energy doubly occupied spin-orbitals 
• virtual orbitals: high energy empty spin-orbitals 
• active orbitals: spin-orbitals in between 

 
CFSs in CASSCF arise from all possible ways of distributing 
electrons among the active spin-orbitals.  
 
Better for bond forming/breaking processes involving the active 
electrons 
 
Multi-reference CI 
 
 Generate CFSs not only from the H-F configuration, but 
also excited ones as well. 
 
 Good for excited states and dissociation limits. 
 
Coupled-cluster (CC) methods 
 
 HF

TT
CC e Φ=Ψ ++ )( ...ˆˆ 21  

 
where the operators in the exponent represent single, double, 
triple excitations, etc.  
 
Better than CI because it includes excitations in all orders and is 
better in capturing more correlation energy. 
 
CCSD: coupled-cluster with single and double excitations. 
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Møller-Plesset (MP) perturbation theory 
 
 HHH ′+= ˆˆˆ

0  
 
where at H-F limit they are  
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It can be shown that  
 
 )1(0 EEEHF += , 
 
so MP1 is not effective in including correlation energy. 
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MP2: includes double excitations. 
 
MP3/4 better, include higher excitations, but much more 
expensive.  
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Pros and cons of CI and MP approaches: 
 
CI: 
• variational 
• provide info for excited states 
• size-inconsistence 
• can be quite expansive, and converge slowly 

 
 
MP: 
• size-consistent 
• good for molecular properties 
• often used for single point calculations  
• difficult to do high-order perturbation calculations 
• non-variational, energy can be lower than true energy 
• not good for geometry far from equilibrium 
• not applicable to excited states 

 
 
Protocol for accurate determination of important properties such 
as atomization energy, ionization energy, electronic and proton 
affinities etc. 
 
G3:  
• HF/6-31G* geometry optimization 
• MP2/6-31G* geometry optimization 
• Single point MP4  
• Corrections  

 
 


