Homework 1, due 1/28

- 1. Take the first and second derivatives with respect to x, namely df/dx and d^2f/dx^2 :
 - a. $f(x) = ax^{3}$ b. $f(x) = ax^{10} - bx^{5} + c$ c. $f(x) = e^{-ax^{2}}$ d. $f(x) = a\sin kx + b\cos kx$ e. $f(x) = \ln ax$ f. $f(x) = \frac{1}{1 + ae^{-\beta x}}$
- 2. Perform the following integrations:
 - a. $\int x^{3} dx$ b. $\int (ax^{7} - bx^{2} + c) dx$ c. $\int (\sin kx) dx$ d. $\int \frac{1}{x} dx$ e. $\int e^{-\alpha x} dx$
- 3. Plot the functions below and find the minima and maxima as well as the roots for the following functions:
 - a. $8x^3 12x$ b. $3\cos^2 \theta - 1$ c. $\frac{1}{9}\rho^2 - 2\rho + 6$
- 4. Calculate the following determinants:

a.
$$\begin{vmatrix} a & b \\ c & d \end{vmatrix}$$

b. $\begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix}$

5. Calculate the following matrix calculations:

a.
$$\begin{pmatrix} 1 & 3 & 0 \\ 7 & 0 & 4 \\ 2 & 1 & 2 \end{pmatrix} \begin{pmatrix} 5 \\ 2 \\ 4 \end{pmatrix}$$

b.
$$\begin{pmatrix} 1 & 3 & 0 \\ 7 & 0 & 4 \\ 2 & 1 & 2 \end{pmatrix} \begin{pmatrix} 3 & 6 & 2 \\ 6 & 0 & 9 \\ 1 & 3 & 1 \end{pmatrix}$$

c.
$$\begin{pmatrix} 6 & 1 & 3 \end{pmatrix} \begin{pmatrix} 1 & 3 & 0 \\ 7 & 0 & 4 \\ 2 & 1 & 2 \end{pmatrix}$$

6. Write a short (1-2 page) assay on how quantum mechanics was born out of the ashes of classical physics. Do not copy from book or web, write it using your own language.