## Homework 5, Due March 4

1. Using the lowering/raising operators for the harmonic oscillator to calculate the following matrix elements:

$$
\langle v| \hat{x}|v+1\rangle, \quad\langle v| \hat{p}|v\rangle, \quad\langle v| \hat{x}^{2}|v\rangle .
$$

2. Using the materials taught in the class, show the proportional coefficients in the following expression is correct:

$$
\hat{b}^{+}|v\rangle=\sqrt{v+1}|v+1\rangle
$$

3. Normalize the wave function $e^{-r / a} \sin \theta \cos \phi$ in the spherical coordinates.
4. The gap between adjacent lines in the rotational spectrum of ${ }^{12} \mathrm{C}^{16} \mathrm{O}$ is $3.86 \mathrm{~cm}^{-1}$, calculate the internuclear distance of this molecule.
5. Show that the rotational wavefunction $3 \cos ^{2} \theta-1$ is an eigenfunction of the Hamiltonian for a three dimensional rigid rotor. Determine the corresponding eigenvalue.
