Homework 6, Due March 11

1. Using ladder operators to calculate the values of $\langle x\rangle,\left\langle x^{2}\right\rangle,\langle\hat{p}\rangle,\left\langle\hat{p}^{2}\right\rangle$ for a harmonic oscillator in its ground state and show that $\Delta x=\sqrt{\left\langle x^{2}\right\rangle-\langle x\rangle^{2}}$ and $\Delta p=\sqrt{\left\langle\hat{p}^{2}\right\rangle-\langle\hat{p}\rangle^{2}}$ satisfy the uncertainty principle.
2. a) Show that the spherical harmonics are eigenfunctions of the operator $\hat{l}_{x}^{2}+\hat{l}_{y}^{2}$ and determine the corresponding eigenvalues.
b). Calculate the possible angles between the angular momentum vector (\vec{l}) and the z axis, assuming $l=1$.
3. Prove the following commutating relationships.

$$
\left[\hat{l}_{+}, \hat{l}_{z}\right]=-\hbar \hat{l}_{+},\left[\hat{l}_{-}, \hat{l}_{z}\right]=\hbar \hat{l}_{-}, \text {and }\left[\hat{l}_{+}, \hat{l}_{-}\right]=2 \hbar \hat{l}_{z} .
$$

4. In a two-electron system, prove that the following spin wave function is an eigenfunction of both the total spin operator squared $\left(\hat{S}^{2}=\left(\hat{S}_{1}+\hat{S}_{2}\right)^{2}\right)$ and the total projection of \hat{S} on the z-axis $\left(\hat{S}_{z}=\hat{S}_{1 z}+\hat{S}_{2 z}\right)$:

$$
|\psi\rangle=|\alpha(1)\rangle|\beta(2)\rangle-|\beta(1)\rangle|\alpha(2)\rangle
$$

Determine the corresponding eigenvalues (Hint: make use of the ladder operators similar to those discussed for the regular angular momentum).

