Homework 9, Due April 8

- 1. Establish the conversion factors between the following energy units: eV, kcal/mol, Hartree, cm⁻¹, and J.
- 2. Prove using relevant spin operators that the following spin wave function corresponds to the $M_s=0$ component of the triplet excited state of He:

$$|\alpha(1)\rangle|\beta(2)\rangle+|\beta(1)\rangle|\alpha(2)\rangle$$

- 3. Write the Slater determinant for the ground state of Be.
- 4. In the matrix representation of the spin, the eigenfunctions are given as

$$|\alpha\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 and $|\beta\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

and the three components of the spin angular momentum are given as

$$\hat{s}_x = \frac{\hbar}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \ \hat{s}_y = \frac{\hbar}{2} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \ \hat{s}_z = \frac{\hbar}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

- a. Show that $|\alpha\rangle$ and $|\beta\rangle$ are indeed the eigenfunctions of \hat{s}_z and \hat{s}^2 .
- b. Prove the commutation relation $[\hat{s}_x, \hat{s}_y] = i\hbar \hat{s}_z$.
- c. Construct the matrix representations for \hat{s}_+ and \hat{s}_- , and show that their actions on an eigenfunction yield either 0 or the other eigenfunction.