Quantum Mechanics

- Molecular properties are governed by interactions between electrons and nuclei.
- Electrons and nuclei are governed by quantum mechanics.
- Quantum mechanics gives an accurate description of molecular systems.

Quantum effects

- Energy quantization.
- Uncertainty principle.
- Zero-point energy.
- Particle-wave duality.
- Tunneling.
- Interference.

Quantum Chemistry

- Application of quantum mechanics to chemical problems.
- The exact limit of quantum chemistry gives accurate description of molecular properties and reaction pathways.

Capabilities of Quantum Chemistry

- With the advances in computer power, we can now study
 - systems with up to few (2-5) atoms with extremely high accuracy (~1 kcal/mol).
 - systems with up to 10-20 atoms at moderate accuracy (~5 kcal/mol).
 - systems with up to 100 atoms with reasonable accuracy (~10 kcal/mol).

Applications

- Organic chemistry: transition state, solvent effects, stereoselectivity, hydrogen bond, hydrophobic interactions, etc.
- Inorganic chemistry: metal ligand interactions, photochemistry, etc.
- Biological chemistry: reaction mechanism, electrostatic interaction.
- Materials science: adsorption, nanomaterials, etc.

Hydrolysis of alkyl-esters

- Classical mechanism of hydrolysis:
 - Stepwise:

nucleophilic addition (NA) and elimination (E)

Hydrolysis of aryl-esters

- Experiments indicated a concerted mechanism
 - Kinetic isotope effects
 - Bronsted correlation
- But have no transition state structure.

Kinetic isotope effects

p-nitrophenyl acetate (pNPA)

Density Functional Theory

- Gas phase study
 - Only NA barrier is found.
 - Barrier height is 2.98 kcal/mol, significantly lower than experimental value (~15 kcal/mol).
 - KIE not in agreement with experimental data.

	^{16/18} O(OH ⁻)	^{16/18} O(PhO)	^{12/13} C(C=O)	^{16/18} O(C=O)	$^{14/15}N(NO_{2})$	3H/D(Me)
KIE					2	
Calc. 1	-	1.0006	-	1.0079	1.0004	0.9505
Calc. 2	1.0147	0.9982	1.0120	1.0036	1.0001	0.8597
Expt.	-	1.0135	1.0342	1.0039	1.0002	0.9562

Solvent effect

• Charged species are stabilized by solvents.

Transition state with seven water solvent molecules

Solvent effect

Concerted transition state.
Barrier height of 15.7 kcal/mol
Excellent KIE agreement.

KIE	^{16/18} O(OH ⁻)	^{16/18} O(PhO)	^{12/13} C(C=O)	^{16/18} O(C=O)	^{14/15} N(NO ₂)	3H/D(Me)
Cala 1		1.0007		1.0070	1.0004	0.0505
Calc. I	-	1.0006	-	1.0079	1.0004	0.9505
Calc. 2	1.0147	0.9982	1.0120	1.0036	1.0001	0.8597
Calc. 3	1.0249	1.0099	1.0404	1.0056	1.0002	0.9711
Expt.	-	1.0135	1.0342	1.0039	1.0002	0.9562

<u>Summary</u>

- Theory can be very helpful in elucidating mechanistic questions.
- Theory can help to identify the key factors that affect the reaction.
- Theory provides molecular structure of key points in reaction pathway.
- Theory may help in designing novel structures.