Practically Pi

I. Topic Area

Interpreting Data

II. Introductory Statement

Children will understand that "pi" is a constant relationship between the circumference and the diameter of any given circle.

III. Math Skills

Science Processes

- a. Measuring
- a. Organizing Data
- b. Graphing
- b. Interpreting Data
- c. Decimal computation

IV. Materials (per group)

Assorted circular containers

l lb. coffee can

2 lb. coffee can

Soup can

Juice can

Wheel

Waste basket

Metal bookends

Meter stick or tape

Chalk or marker

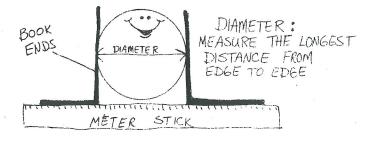
String

Student Worksheet, page 37

V. Key Question

"How does the circumference of any circle com-

pare with its diameter?"


"Brent found that the distance around a circle was a little over 3 times the distance through the circle. Do you think it makes a difference what size circle he measured? Let's find out."

VII. Management Suggestions

- 1. For greatest degree of accuracy, measure to the nearest millimeter.
- 2. Review correct reading and writing of decimal numbers to the tenths place.
- 3. Estimated time: one 45 minute class period.

VIII. Procedure

 Measure the diameter of each circular object (the longest distance from edge to edge).
One way to measure diameter:

- 2. Record the diameter of each object in appropriate table on Student Worksheet.
- Measure the circumference of each circular object. The circumference is the distance around the circle.

One way to measure circumference is:

a. Wrap a tape measure or string around the cylinder near the base. Then measure the string or tape.

b. Or you may roll the cylinder one complete revolution along a meter stick or meter tape.

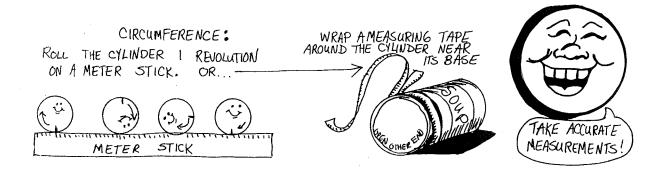
- 4. Record the circumference for each object in the table on the Student Worksheet.
- 5. Complete the Table:

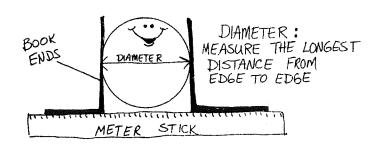
Column C—Express each ratio as a fraction or decimal ratio.

Example: $\frac{C}{D}$ or C:D

Column D—Divide each circumference by its diameter and record the answer in Column D.

IX. What the Students Will Do


- 1. Measure and record the circumference and diameter of various objects according to the above procedure.
- 2. Record the relationship of circumference to diameter and compute the decimal equivalents.
- 3. Discover the "constancy" of the relationship of circumference to diameter.


X. Discussion

- Observe: What did you notice about the relationship between circumference and diameter in Column D? If you know the circumference of a circle, can you find the diameter? How? Can you find the circumference if you know the diameter? how?
- 2. What if you put the diameters and the circumferences measured into a graph? What would it look like? Use centimeter graph paper and try it!

XI. Extension

- 1. Introduce 3 unknown cylinders: A, B, and C. Give the diameters of A and B and the circumference of C. Can you find the missing figures?
- 2. Organize and record your data into a table. You may wish to draw a picture or cartoon also.

ractically

DIAMETER? 175 MIT COMPARE HOW DOES THE CIRCUMFERENCE OF ANY CIRCLE

DIAMETER CIRCUMFERENCE RATIO = CIRCUMFERENCE

REJOLUTION OR... CIRCUMFERENCE: SOLL THE CYLINDER I ON A METER STICK.

DIAMETER: MEASURE THE LONGES

800K RNDS 200K

DISTANCE FROM

STICK

METER

WRAP AMEASURING AROUND THE CYLINDER

TAKE ACCURATE MEASUREMENTS!