
EXPLAINED GAUSS-MARKOV PROOF: ORDINARY
LEAST SQUARES AND B.L.U.E 1

This document aims to provide a concise and clear proof that the ordinary least squares model is
BLUE. BLUE stands for Best, Linear, Unbiased, Estimator. In this example, we will start from back
to front. The �rst thing to do is list the OLS estimator in functional form.

y = βx+ ε

This equation represents the population values of x, y, beta, and the error term. Since we can almost
never �nd true population statistics, OLS serves to create an estimator dependent on a sample of that
population. Estimate values are denoted with hat symbols on any estimated parameter.

ŷ = β̂x+ e

Since we know nothing about the error terms, an alternative measure is used.2 Upon creating predicted
values of y and β, we can look at the di�erence between the predicted y value and the actual y value
for that observattion. This di�erence is known as a residual which denote with an e.

The OLS form can be expressed in matrix notation which will be used throughout the proof where
all matrices are denoted by boldface.

y =Xβ + e

ESTIMATOR

This is the simplist part of determining whether OLS is blue. For OLS to be an estimator, it must
predict an outcome based on the sample. In this case, ŷ and β̂ are estimator as the represent the
predicted values of y and beta given the sample data x.

UNBIASED

In order to prove that OLS in matrix form is unbiased, we want to show that the expected value of β̂
is equal to the population coe�cient of β. First, we must �nd what β̂ is.

y =Xβ + ε

ε = y −Xβ

Then if we want to derive OLS we must �nd the beta value that minimizes the squared residuals (e).

ε′ε = (y −Xβ)′(y −Xβ)

Note that the square of a matrix is denoted by the multiplication of the matrix transpose by itself.
Our next step is to simply distribute the terms.

ε′ε = y′y − y′(Xβ)− (Xβ)′y − (Xβ)′(Xβ)

An important simpli�cation that we will use is that y′(Xβ) = (Xβ)′y. This is found by Taking the
transpose of each term and �nding that it equals the other (e.g. (y′(XB))′ = (XB)′y and vis versa).
Our equation then simpli�es.

1Jesse I. Kaczmarski | University of New Mexico, Department of Economics | jikaczmarski@unm.edu
2Error terms represent all the unexplained variation in the derivation of y. Since we cannot collect and regress all

variables that might in�uence an observation's y value, we have to capture it for completeness.
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ε′ε = y′y − 2(Xβ)′y − β′X ′Xβ

Now in order to �nd the beta that minimizes our subject, we want to take the derivative in respect
to beta and set it equal to zero. This will �nd the point in the function where our slope is equal to
zero, also known as a minimum point.

∂ε′ε

∂β
= −2X ′y − 2X ′Xβ̂ = 0

Since this is equal to zero, we can move terms around and set one part of the equation equal to the
other. Note that the 2's cancelled out, and the β is on the right side of the X ′X. This is because we
are taking it in respect to β, not β′. In addition, β′β is the same as a squared term, so the 2 appears
by taking the derivative of a squared term.

X ′Xβ̂ =X ′y

Now in order to move one matrix to the other side of the equation, we must take the matrix equivalent
of division, which is the inverse of a matrix.

(X ′X)−1X ′Xβ̂ = (X ′X)−1X ′y

β̂ = (X ′X)−1X ′y

This concludes the matrix derivation of β̂. Now in order to prove that β̂ is an unbiased estimator, we
want to show that the expected value of β̂ is equal to β. We can take what we know from above and
substitute y into the most recent equation.

β̂ = (X ′X)−1X ′(Xβ + ε)

We can then distribute the terms accordingly where (X ′X)−1X ′ is a single term.

β̂ = (X ′X)−1X ′Xβ + (X ′X)−1X ′ε

Now in the �st term, we �nd there is a matrix time it's inverse, which is known to be the identity
matrix (a matrix notation for multiplying by 1) which we will denote with I.

β̂ = Iβ + (X ′X)−1X ′ε

When we take the expectation of both side, we �nd that the expected value of a number (in this case β)
is itself, and we must invoke OLS assumption number 3. This is the zero conditional mean assumption
which states that the expected value of an error term dependent on X will be zero; E(εi|xi) = 0. This
is required for OLS since we know nothing about the error terms. To say there was a value on this
conditional would be to say that we know something about the error term. Therefore this entire
second term goes to zero. This proves that the estimator for our OLS is unbiased.

E(β̂) = β

LINEAR

Now that we have proved that our estimator is ubiased, we also proved it was linear. The fact that
we can write β̂ = β+Aε where A = (X ′X)−1X ′ proves that it is linear. This is because the A term
is a liner combination of matrices. Matrix algebra only works in the presence of linearity. Therefore
this assumption is proven.

BEST

This �nal part of the proof is the most di�cult, and require many assumptions to be enacted. We
must �rst de�ne our objective. In order to prove that our estimator is the best, we must prove that
our estimator is either equal to or less than the variance of all other unbiased estimators. The �rst
step of this process is to �nd the variance of our current estimator. The variance of an estimator can
be found by squaring the error terms. Similar to what was done before, but this time we will use what
we learned in the unbiasedness proof to do some substitution. Note that our residuals can be de�ned
as the di�erence between our predicted and actual values of β and the square of this is the variance.
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var(β̂) = (β̂ − β)(β̂ − β)′

Now in order to �nd what (β̂ − β) is, we use the β̂ = β + (X ′X)−1X ′ε equation we found before,
and subtract the β onto the left side. Note that we do not let X ′ε go to zero here since we are not
taking the expectation of it. We now substitute this into the equation.

var(β̂) = ((X ′X)−1X ′ε)((X ′X)−1X ′ε)′

Now the transpose is distributed into the second term. Note that the transpose of an invesre matrix
will end up being the same.

var(β̂) = ((X ′X)−1X ′ε)(ε′X(X ′X)−1)

var(β̂) = (X ′X)−1X ′εε′X(X ′X)−1

Note that we have a εε′ term in the middle that is dependent on X. This allows us to envoke OLS
spherical assumption that states E(εε′|x) = σ2I. By taking this expected value we are left with
the following. Also note that the inverse of a matrix times itself is the identity matrix, in this case
(X ′X)−1(X ′X) = I

var(β̂) = σ2I[(X ′X)−1X ′X(X ′X)−1]

var(β̂) = σ2(X ′X)−1

Note that we still do not know the value of σ2 as it is derived directly from our error term. In
this case it will su�ce for comparing best estimators. A derivation of the true sample variance can
be found in the appendix. Now that we have found the variance for our estimator, we must �nd the
variance for all other linear unbiased estimators. In order to do this we must create a new matrix �C�
which is linear (as seen by CX = I). In addition, C can be expressed as C =D+(X ′X)−1X ′ where
DX = 0. This C matrix is unbiased in that C can be expressed as D = C − (X ′X)−1X where
β0 = CY . This states that β0 is linear and it is assumed to be unbiased through the same proof we
have done before. Now we must derive the variance of this estimator and see how it compares to the
variance of β̂. The set up for this derivation is similar to that above.

var(β̂0) = (β0 − β)(β0 − β)′

Note that if β0 = CY and Y =Xβ + ε.
β0 = C(Xβ + ε)

β0 = CXβ +Cε

Now we invoke the fact that CX = I.
β0 = β +Cε

β0 − β = Cε

Now that we have found this subject, we can substitute it back into our variance formula and distribute
the transpose in the second term.

var(β̂0) = (Cε)(Cε)′

var(β̂0) = (Cε)(ε′C ′)

Remeber from OLS assumption 4, that the expected value of the square of the residuals dependent
on X's is σ2I. Also note that C = D + (X ′X)−1X ′ as de�ned at the start of this derivation. Our
expression gets simpli�ed and substituted.

var(β̂0) = σ2I(CC ′)

var(β̂0) = σ2(D + (X ′X)−1X ′)(D + (X ′X)−1X ′)′
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After distributing the transpose we �nd the following expression
var(β̂0) = σ2(D + (X ′X)−1X ′X(X ′X)−1D′)

var(β̂0) = σ2(DD′ + (X ′X)−1)

var(β̂0) = σ2(DD′) + σ2(X ′X)−1

Since we know that the variance of β̂ is σ2(X ′X)−1, then our equation simpli�es further.

var(β̂0) = σ2(DD′) + var(β̂)

Since a squared term (DD') cannot be negative, we can conclude that the variance of β̂0 will be equal

to or greater to the variance of β̂ by a value of σ2(DD′). Since it must be non-negative, but it may
be zero. This concludes that there are no linear unbiased estimators that are smaller in variance than
the OLS estimator. While they may be the same, our OLS will remain BLUE.
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APPENDIX A - DERIVING THE SAMPLE VARIANCE

In terms of comparing the OLS estimator we found originally to that of other unbiased linear estima-
tors, it is acceptable to leave the variance in terms of σ2I as we are looking for a magnitude change
between var(β̂) and var(β̂0). It is actually impossible to know this value of σ2 as it is derived directly
from out error terms (remember that E(εε′|x) = σ2I via OLS spherical assumption) and we are not
supposed to know anything about our error terms. This appendix will derive the sample variance
using terms found throughout this document.

Let us assume a new matrix, M, that is de�ned as M = I −X(X ′X)−1X ′ where M represents a
symmetric and idempotent matrix.3 We can then rewrite our OLS model as follows.

e =My

My = (Xβ + ε)M =Mε

This relationship can seem slightly confusing without the proper explaination. This relation can be
seen by substituting M into the original equation for the residuals. The mechanism where M(Xβ)
goes to 0 is the same mechanism described below.

e = (I −X(X ′X)−1X ′)(y −Xβ)

e = (I −X(X ′X)−1X ′y − (I −X(X ′X)−1X ′Xβ)

e =My − (I −XIβ)

e =My = Mε

This allows us to establish a relationship between the error terms and the residuals. Based o� of this
relationship, we �nd that e = Mε. Therefore the expected value of the squared residuals can be
described as follows.

E[e′e] = E[ε′Mε]

In order to �nd this expected value, we must take the trace of the righthand side.
E[e′e] = E[trace(ε′Mε)]

The trace of a matrix is the sum of the eigenvalues (i.e. these are known as the diagonal values of
a matrix). The trace is only de�ned for a square matrix. We can expand our previous equation as
follows.

E[e′e] = E[trace(ε′Mε)] = σ2trace[M ]

Expanding M, we �nd that.
E[e′e] = σ2trace[I]− trace[X(X ′X)−1X ′]

The resulting value is akin to σ2 time (n − k) where n is the number of observations and k is th
number of estimators being used. Therefore we �nd that.

E[e′e] = σ2(n− k)

Now in order to �nd what our σ2 parameter equals, the (n − k) term is simply divided to the other
side. Since the expected value of a number is itself (note that e'e is a number), then we �nd our
sample variance as.

S2 =
e′e

(n− k)
This would then convert our variance of our estimator to be the following.

var(β̂) = S2(X ′X)−1, where S2 =
e′e

(n− k)

3An idempotent matrix states that M*M=M. Therefore, you wanted to do the math, you would �nd that (I −
X(X′X)−1X′)(I −X(X′X)−1) = I −X(X′X)−1X′.
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