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rough measure of validity even when used to describe the dense liquid state.
It should thus be permissible to use this equation to discuss approximately the
occurrence of the gas-liquid phase transformation by the arguments of Sec. 8- 6.

FERROMAGNETISM

10 . 6 Interaction between spins

Consider a solid consisting of N identical atoms arranged in a regular lattice.
Each atom has a net electronic spin S and associated magnetic moment u.
Using a notation similar to that of Sec. 7-8, the magnetic moment of an atom is
then related to its spin by*

¥ = gueS (10-6-1)

where uo is the Bohr magneton and the g factor is of order unity. In the pres-
ence of an externally applied magnetic field H, along the z direction, the
Hamiltonian 3¢, representing the interaction of the atoms with this field is then

N N
3o = —guo 2 S;« Hy = —guoH, E Sj. (10-6-2)
i=1 i=1

In addition, each atom is also assumed to interact with neighboring
atoms. This interaction is not just the magnetic dipole-dipole interaction due
to the magnetic field produced by one atom at the position of another one.
This interaction is in general much too small to produce ferromagnetism. The
predominant interaction is usually the so-called ‘“exchange” interaction. This
is a quantum-mechanical consequence of the Pauli exclusion principle. Since
electrons cannot occupy the same state, two electrons on neighboring atoms
which have parallel spin (i.e., which cannot occupy the same orbital state)
cannot come too close to each other in space (i.e., cannot occupy the same
orbital state) ; on the other hand, if these electrons have antiparallel spins, they
are already in different states, and there is no exclusion-principle restriction on
how close they can come to each other. Since different spatial separations of
the electrons give rise to different electrostatic interactions between them, this
qualitative discussion shows that the electrostatic interaction (which can be of
the order of 1 ev and can thus be much larger than any magnetic interaction)
between two neighboring atoms does also depend on the relative orientations
of their spins. This is the origin of the exchange interaction, which for two
atoms j and k can be written in the form

3 = —2JS; - Se (10-6-3)

Here J is a parameter (depending on the separation between the atoms) which
measures the strength of the exchange interaction. If J > 0, the interaction

* In Sec. 7-8 we used the symbol J instead of S, but the latter notation is customary in
discussions of ferromagnetism; it also avoids confusion with the conventional use of J to
designate the exchange energy in (10-6-3).
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energy 3¢ is lower when the spins are parallel than when they are antiparallel
The state of lowest energy will then be one which favors parallel spin orienta-
tion of the atoms, i.e., one which tends to produce ferromagnetism. Note also
that, since the exchange interaction depends on the degree to which electrons
on the two atoms can overlap so as to occupy approximately the same region in
space, J fal]s off rapldly with increasing separation between atoms; hence the

is ligible except when the atoms are sufficiently close
to each other. Thus each atom will interact appreciably only with its # nearest
neighbor atoms.

Remark Let us show explicitly that the magnetic interaction between atoms
is far too small to account for ordinary ferromagnetism. Since an atom pro-
duces a magnetic field at a distance r of the order of uo/r%, the magnetic inter-
action of an atom with its » neighboring atoms at a distance r is approximately
(nuo/r?). Takingn = 12, po =~ 10720 ergs gauss™* (the Bohr magneton), and
r=2-10"% cm, this gives for the interaction energy 1.5 X 1071 ergs or,
dividing by k, about 1°K. This magnitude of interaction energy might well
produce ferromagnetism below 1°K, but certainly not in the region below
1000°K where metallic iron is ferromagnetic!

To simplify the interaction problem, we shall replace (10-6-3) by the
simpler functional form
B = —2J 515k (10-6-4)

This approximate form leaves the essential physical situation intact and avoids
the oomplications introduced by the vector quantities. (The simpler form
(10-6-4) is called the “Ising model”. )

The Hamiltonian 3¢’ r the i jion energy between the
atoms can then be written in the form

=3 (- i E S3u8ks) (10-6-5)
i=1 k=1

where J is the exch for neighboring atoms and the index k refers
to atoms in the nearest neighbor shell surrounding the atomj. ~ (The factor 4 is
duced because the i tion between the same two atoms is counted
twice in performing the sums).
The total Hamiltonian of the atoms is then

3¢ = 3¢ + 5’ (10-6-6)

The problem is to calculate the thermodynamic functions of this system, e.g.,
its mean magnetic moment M, as a function of the temperature 7' and the
applied field H,. The presence of interactions makes this task quite compli-
cated despite the extreme simplicity of (10-6-5). Although the problem has
been solved exactly for a two-dimensional array of spins when H, = 0, the
three-dimensional problem is already so difficult that it has up to now defied
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exact solution. We shall therefore attack the problem by the simplest method
of approximation, the molecular-field theory of Pierre Weiss.

10 . 7 Weiss molecular-field approximation

Focus attention on a particular atom j, which we shall call the ‘“‘central atom.”
The interactions of this atom are described by the Hamiltonian

JCJ‘ = —'g[l,oHonz —_ ZJS,', E Skz (1071)
k=1

The last term represents the interaction of this central atom with its n nearest
neighbors. As an approximation we replace the sum over these neighbors by
its mean value, i.e., we put

n
2J Y Sk. = guoHn (10-7-2)
k=1
where H,, is a parameter defined so as to have the dimensions of a magnetic
field. It is called the “molecular” or “internal’ field and is to be determined in
such a way that it leads to a self-consistent solution-of the statistical problem.
In terms of this parameter (10-7-1) becomes just

SC]' = —gp,o(Ho + Hm)Sj; (1073)

The effect of neighboring atoms has thus simply been replaced by an effective
magnetic field H,. The problem presented by (10-7-3) is just the elementary
one of a single atom in an external field (H, + H,), a problem discussed in
Sec. 7-8. The energy levels of the central jth atom are then

E, = —gu(Ho + Hp)m,, my=—=8,(=8S+1),...,8 (10-7-4)

From this one can immediately calculate the mean z component of spin of
this atom. One has by (7-8-13)

Sj: = SBs(n) (10-7-5)
where n = Bguo(Ho + H,), = (kT)~! (10-7-6)
and Bg(n) is the Brillouin function for spin S defined in (7-8-14).

The expression (10-7-5) involves the unknown parameter H,. To deter-
mine it in a self-consistent way, we note that there is nothing which dis-
tinguishes the central jth atom from any of its neighboring atoms. Hence any
one of these neighboring atoms might equally well have been considered as the

central atom of interest and its mean value of S, must also be given by (10-7-5).
To obtain self-consistency we must then require that (10-7-2) reduce to

2JnSBs(n) = guoHm (10-7-7)
Since 9 is related to H, by (10-7-6), the condition (10-7-7) is an equation
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which determines H,, and thus completes the solution of the entire problem.
Expressing H.,, in terms of », (10-7-7) becomes

_ kT _ groHly .
> Bs() = m( T ) (10-7-8)

which determines » and thus H,.. In particular, in the absence of external field
(10-7-8) becomes,

kT
578" (10-7-9)
The solution of the equations (10-7-8) or (10-7-9) can readily be obtained
by drawing on the same graph (as shown in Fig. 10-7-1) both the Brillouin
function y = B,(n) and the straight line

_ kT _ groHy
Y= amrs\" T kT
and finding the point of intersection n = 5’ of these two curves.

Once the molecular field parameter H., is determined, the total magnetic
moment of the sample is of course known. One has by (10-7-5) simply

M = guo Y, Bz = NouoSBs(n) (10-7-10)

for Ho = 0, Bs(n) =

Consider now the case when the external field Ho = 0. It is then always
true that y = 0is a solution of (10-7-9) so that the molecular field H,, vanishes.
But there exists also the possibility of a solution where 7 # 0 so that H,

v
vo 2T (o)
" Ty kT
/’
/ =B,
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s H, I w "
2nJS
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T

Fig. 10:7-1 Graphical solution of Eq. (10-7+8) determining the molecular
field H., corresponding to the intersection of the curves atn = n'. The
dashed straight line corresponds to the case where the external field Ho = 0.
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assumes a finite value; correspondingly, there exists then a magnetic moment
given by (10-7-10). The presence of such spontaneous magnetization in the
absence of an external field is, of course, the distinguishing characteristic of
ferromagnetism. To have such a solution where 5 # 0 it is necessary that
the curves in Fig. 10-7-1 intersect at a point 7 # 0 when both curves start
out at the origin. The condition for this to occur is that the initial slope of the
curve y = Bgs(n) is larger than that of the straight line, i.e., that

dBs kT .
[_(iﬂ_] > TS (10-7-11)

But when n < 1, Bs assumes the simple form given by (7-8-19)

Bs(n) = (8 + )n (10-7-12)
Hence (10-7-11) becomes
kT
= (S +1) > TS
or T<T.
where
> kT, = 2&_‘3(3@ (10-7-13)

Thus there exists the possibility of ferromagnetism below a certain critical
temperature T., called the “Curie temperature,” given in terms of J by
(10-7-13). This ferromagnetic state where all spins can exploit their mutual
exchange energy by being preferentially aligned parallel to each other has
lower free energy than the state where n = H,, = 0. At temperatures below
T. the ferromagnetic state is therefore the stable one.*

As the temperature T is decreased below T, the slope of the dashed straight
line in Fig. 10-7-1 decreases so that it intersects the curve y = Bs(n) at
increasingly large values of # corresponding to increasingly large values of y.
For T'— 0, the intersection occurs for n — « where Bs(n) — 1; then (10-7-10)
gives M — NguoS, the magnetic moment when all spins are aligned com-
pletely parallel. For all these temperatures one can, of course, use (10-7-10)
to compute M(T) corresponding to the various values of n. One then obtains
a curve of the general shape shown in Fig. 10-7-2.

Finally we investigate the magnetic susceptibility of the solid in the
presence of a small external field at temperatures above the Curie temperature

* This does not mean that a macroscopic sample in zero external field necessarily has a
net magnetic moment. To minimize the energy stored in the magnetic field, the sample
tends to become subdivided into many domains, each magnetized along a definite direction,
but with these directions differing from one domain to another. (See C. Kittel, ‘“Introduc-
tion to Solid State Physics,” 2d ed., chap. 15, John Wiley & Sons, Inc., New York, 1956.)
Our discussion thus applies to a single domain.
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Fig. 10-7-2 ization M of a

of temperature T in zero external magnetic field. The curve is s based on the
molecular field theory of (10-7-10) and (10-7-9) with § = }. The points
indicate experimental values for nickel (measured by P. Weiss and R. Forrer,
Ann. Phys., vol. 5, p. 153 (1926)).

(10-7-13). Then we are in a region where  in Fig. 10-7-1is small. Thus one
can use the approximation (10-7-12) to write the general consistency condition
(10-7-8) in the form

1 kT _ grolly
g+ = 2an(" kT )

Solving this for » gives, using the quantity k7. defined in (10-7-13),

= a7y

Thus (10-7-10) yields
M = 3NguoS(S + Dy
so that

_ M _ Ng*w®S(S + 1) .
» XS T ST - Ty (10-7-15)

is the magnetic susceptibility of N atoms. This is called the Curie-Weiss law.
1t differs from Curie’s law (7-8-22) by the presence of the parameter T, in the
denominator. Thus x in (10-7-15) becomes infinite when T—> T, i.e., at the
Curie where the sub: becomes fer

Experimentally the Curie-Weiss law is well obeyed at temperatures well
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Fig. 10:7:3 Plot of x™! versus T per gram of gadolinium metal above its
Curie temperature. The curve is (except for some slight departures at high
temperatures) a straight line, in accord with what would be expected from
the Curie-Weiss law (10-7-15). The intercept of the line with the tempera-
ture axis gives T. = 310°K. The metal becomes ferromagnetic below 289°K.
(Experimental data of S. Arajs and R. V. Colvin, J. Appl. Phys., vol. 32
(suppl.), p. 336 (1961).)

above the Curie tempemtu.re 1t is, however, not true that the temperature
T, occurring in (10- 7 15) is exactly the same as the Curie temperature at
which the sub ic. Furthermore, the shape of the
magnetization curve calculated by the Weiss molecular-field theory in Fig.
10-7-2 is quantitatively not quite correct. One of the most serious dis-
crepancies of the present theory concerns the behavior of the specific heat at
the Curie temperature in zero external field. Experimentally, the specific heat
has a very sharp di inuity at that whereas the theory just
discussed predicts a much less abrupt change. The existence of these dis-
crepancies is not surprising in view of the drastic approximations used in this
SImple theory whwh replaced all spms l:vy some average eﬁecnve field and

d the of any in the ori i of
different spins. The simple theory is, nevertheless, remarkably successful in
exhibiting all the main features of ferromagnetism. Needless to say, more
refined approximation methods have been devised which improve agreement
with experiment considerably.*

* One of the simplest of these, the so-called Bethe-Peierls-Weiss approximation (the
Weiss involved here being a different person from Pierre Weiss, who introduced the concept
of the molecular field), is a straightforward generalization of the method used in this section.
1t simply treats a central atom and its nearest neighbors exactly and replaces all the other
atoms by an effective molecular field. See P. R. Weiss, Phys. Rev., vol. 74, p. 1493 (1948).
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PROBLEMS

10.1 For the quantized lattice waves (phonons) discussed in connection with the
Debye theory of specific heats, the frequency w of a propagating wave is related
to its wave vector ¥ by w = ck, where k = |x| and ¢ is the velocity of sound.
On the other hand, in a ferromagnetic solid at low temperatures quantized waves
of magnetization (spin waves) have their frequency w related to their wave num-
ber k according to w = Ak? where A is a constant. At low temperatures, find
the temperature dependence of the heat capacity due to such spin waves.

10.2 Use the Debye approximation to find the following thermodynamic functions of
a solid as a function of the absolute temperature T

(a) In Z, where Z is the partition function
(b) the mean energy E
(c) the entropy S



