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rapidly Q(E) increases with E, the shaper this maximum becomes. Thus we
arrive again at the conclusions of Sec. 3-7. We emphasize, however, that
(6-2-9) is valid no matter how small A is. It may even be a system of atomic
size, provided that it can be treated as a distinguishable system satisfying the
additivity of energy (6-2-1).

Once the probability distribution (6-2-7) is known, various mean values
can readily be computed. For example, let y be any quantity assuming the
value y, in state r of the system A. Then

T

where the summation is over all states r of the system A.

6-3 Simple applications of the canonical distribution

The canonical distribution (6-2:7) yields a host of conclusions. Here we
mention only a few illustrative applications where the canonical distribution
leads immediately to physically very important results. Most of these will be
discussed more fully in Chapter 7.

Paramagnetism Consider a substance which contains N, magnetic atoms
per unit volume and which is placed in an external magnetic field H. Assume
that each atom has spin 4 (corresponding to one unpaired electron) and an
intrinsic magnetic moment u. In a quantum-mechanical description the mag-
netic moment of each atom can then point either parallel or antiparallel to the
external field H. If the substance is at absolute temperature T, what is the
mean magnetic moment Gy (in the direction of H) of such an atom? We
assume that each atom interacts only weakly with the other atoms and with
the other degrees of freedom of the substance. It is then permissible to focus
attention on a single atom as the small system under consideration and to
regard all the other atoms and other degrees of freedom as constituting a heat
reservoir.*

Each atom can be in two possible states: the state (4) where its spin
points up (i.e., parallel to H) and the state (—) where its spin points down (i.e.,
antiparallel to H). Let us discuss these states in turn.

In the (4) state, the atomic magnetic moment u is parallel to H so that
pa = p. The corresponding magnetic energy of the atom is then e, = —uH.

* This assumes that it is possible to identify a single atom unambiguously, an assump-
tion which is justified if the atoms are localized at definite lattice sites of a solid or if they
form a dilute gas where the atoms are widely separated. In a concentrated gas the assump-
tion might break down. It would then be necessary to adopt a point of view (which is
always permissible, although more complicated) which considers the entire gas of atoms as a
small microscopic system in contact with a heat reservoir provided by other degrees of
freedom.
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The probability of finding the atom in this state is thus
P+=Ce—ﬁ!+ = ( ePuH (6.31)

where C is a constant of proportionality and 8 = (kT)~!. This is the state
of lower energy (if u is positive) and is thus the state in which the atom is more
likely to be found.

In the (—) state, u is antiparallel to H so that uz = —pu. The corre-
sponding energy of the atom is then e = +uH. The probability of finding
the atom in this state is thus

P_ = (CeBe- = ( eBuH (6-3-2)

This is the state of higher energy (if u is positive) and is thus the state in which
the atom is less likely to be found.

Since the first state where u is parallel to H is more probable, it is clear
that the mean magnetic moment &y must point in the direction of the external
field H. By virtue of (6-3-1) and (6-3-2), the significant parameter in this
problem is the quantity

= _ uH

which measures the ratio of a typical magnetic energy to a typical thermal
energy. It is apparent that if T is very large, i.e., if y < 1, the probability
that u is parallel to H is almost the same as that of its being antiparallel. In
this case u is almost completely randomly oriented so that gz =~ 0. On the
other hand, if T is very small, i.e., if y >> 1, then it is much more probable that
v is parallel to H rather than antiparallel to it. In this case gy =~ u.

All these qualitative conclusions can readily be made quantitative by
actually calculating the mean value gy. Thus we have

_ P+ P (—p) _ P — P
T TP+ P. T HeE R
J .
or g = ytanh’;—T (6-3-3)
Here we have used the definition of the hyperbolic tangent
e¥Y — eV
tanh Yy = m

The “magnetization” M,, or mean magnetic moment per unit volume, is then
in the direction of H and is given by

M, = Noin (6-3-4)

One can easily check that gy exhibits the qualitative behavior already dis-

cussed. Ify «1,thene* =1+ y+ - -andev=1—y+ ---. Hence
A+y+ - )—(Q-—y—--)

for y <1, tanhy = 5 =y
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On the other hand, if y >> 1, then e¥ >> ¢=%. Hence

for y > 1, tanhy =1

Thus (6-3-3) leads to the limiting behavior that

for uH/ET < 1, o = B0 (6-3-5a)

for uH/kT > 1, in = p (6-3-5b)
By (6-3-4) and (6-3-5a) it then follows that

if uH/kT < 1, M, = xH (6-3-6)

where x is a constant of proportionality independent of H. This parameter
x is called the ‘“‘magnetic susceptibility’’ of the substance. Equation (6-3-5a)
provides an explicit expression for x in terms of microscopic quantities, i.e.,

_ N0#2

X = Fp (6-3-7)
The fact that x « T-!is known as Curie’s law. On the other hand,
if uH/ET > 1, My— Nou (6-3-8)

becomes independent of H and equal to the maximum (or ‘“saturation’’) mag-
netization which the substance can exhibit. The complete dependence of the
magnetization M, on temperature T and magnetic field H is shown in Fig.
6-3-1.
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Fig. 6-3-1 Dependence of the magnetization M, on magnetic field H and
temperature T for noninteracting magnetic atoms of spin 3+ and magnetic
moment u.



