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For an ideal monatomic gas the entire energy is kinetic, so that the mean
energy per mole of gas is simply

E = No(§kT) = $RT

The molar specific heat at constant volume is then

oE 3
cv—<ﬁ)v—§1?, (7-6-3)

Brownian motion Consider a macroscopic particle of mass m immersed in a
liquid at temperature T. Let the z axis point in the direction of the gravita-
tional field (if one is present) and focus attention on v,, the  component of the
center-of-mass velocity of the particle. The mean value of v, must vanish by
symmetry; i.e.,

7, =0

But it is, of course, not true that v, itself is always found to vanish if one
observes a collection of such particles; velocity fluctuations do occur. Indeed,
the equipartition theorem can be applied to the center-of-mass energy terms
just as in the preceding example; thus one can conclude that

Imo,? = $kT or v, = kT
m
The dispersion v,? in this velocity component is thus negligibly small when
mislarge. For example, when the particle is the size of a golf ball, fluctuations
in its velocity are essentially unobservable and the particle appears to be at
rest. But when m is small (e.g., when the particle has a diameter of about a
micron), »,2 becomes appreciable and velocity fluctuations can readily be
observed under a microscope. The fact that small particles of this kind
perpetually move about in a random manner was first observed by Brown, a
botanist, in the last century. The phenomenon is, therefore, called ‘‘Brownian
motion.” It was explained theoretically by Einstein in 1905 on the basis of
the intrinsic thermal fluctuations resulting from the interaction of the small
particle with the heat bath, i.e., from the random collisions of the particle with
the molecules of the liquid. The phenomenon was historically important in
helping to gain acceptance for the atomic theory of all matter and for the
validity of the statistical description thereof.

Harmonic oscillator Consider a one-dimensional harmonic oscillator which
is in equilibrium with a heat reservoir at absolute temperature T. The energy
of such an oscillator is given by
E=2 4l (7-6-4)
2m 2
where the first term on the right is the kinetic energy involving the momentum
p and mass m, and the second term on the right is the potential energy involv-
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ing the position coordinate x and spring constant xo. Each of these terms is
quadratic in the respective variable. Hence the equipartition theorem leads
immediately to the following conclusions, valid in the classical approximation:®

o |-
mean kinetic energy = o p? = kT

mean potential energy = $xoz? = $kT
Hence the mean total energy is
E = 3kT + 3kT = kT (7-6-5)

It is instructive to treat this example by quantum mechanics as an illustra-
tion of the limits of validity of the classical description. According to quantum
mechanics the possible energy levels of the harmonic oscillator are given by

Ev = (n + Hhw (7-6-6)

where the possible states of the oscillator are labeled by the quantum number
n which can assume all integral values

n=20,1,23, ...
Here # is Planck’s constant (divided by 2#) and

o =\/% (7-6.7)

is the classical angular frequency of oscillation of the oscillator. The mean
energy of the oscillator is then given by

5 e 102 9
5 _ n=0 — 1% _ _ 9 Aa.
E=1=2 7 38 3572 (7-6-8)
E e—BEn
n=0
where 7 = E e BE, = E e—(n+5)ﬂhw (769)
n=0 n=0
or 7 = e ¥to E e—nbhe — e—iﬂhu(l + e Bro - g—2Who . . )
n=0

This sum is just an infinite geometric series where each term is obtained from
the preceding one as a result of multiplication by e#*. The sum can thus
immediately be evaluated to give

Z = Lo (7-6-10)

or InZ = —4phew — In (1 — e~#) (7-6-11)
Thus one obtains, by (7-6-8),

= ) 1 e Phohe
E = —(—ﬁan—- —(—Ehw—m>
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or
> E = ho l-l——l— (7-6-12)
2 efe — 1
Let us now investigate some limiting cases. When
hw
Bhw _ﬁ«l (7-6-13)

the temperature is so high that the thermal energy kT is large compared to the
separation hw between energy levels. Then one expects the classical descrip-
tion to be a good approximation. Indeed, if (7-6-13) is valid, the exponential
function can be expanded in Taylor’s series so that (7-6-12) becomes

_ 1 1 11
E=h“’[‘2‘+(1+ahw+ = .)—1]~h‘°[§+m]

o [[ﬁ] by virtue of (7-6-13)

= kT (7-6-14)

or E =

=

in agreement with the classical result (7-6-53).
On the other hand, at low temperatures where

fu

Bhw = ﬁ»l (7-6-15)
one has e > 1, so that (7-6-12) becomes
E = ho(3 + e#™) (7-6-16)

This is quite different from the equipartition result (7-6-5) and approaches
properly the (“zero point”’) energy 4hw of the ground state as T — 0.

7 . 7 Specific heats of solids

Consider any simple solid with Avogadro’s number N, of atoms per mole.
Examples might be copper, gold, aluminum, or diamond. These atoms are free
to vibrate about their equilibirum positions. (Such vibrations are called
“lattice vibrations.”) Each atom is specified by three position coordinates
and three momentum coordinates. Since the vibrations are supposed to be
small, the potential energy of interaction between atoms can be expanded about
their equilibrium positions and is therefore quadratic in the atomic displace-
ments from their equilibrium positions. The net result is that the total energy
of lattice vibrations can be written (when expressed in terms of appropriate
“normal mode coordinates’’) in the simple form

3Na
= \(r L1 7.
E = 2 (2m + D) K1q12> (7 7 1)

i=1
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Here the first term is the total kinetic energy involving the 3N, (normal-mode)
momenta of the atoms, while the second term is the total potential energy
involving their 3N, (normal-mode) coordinates. The coefficients «; are positive
constants. Thus the total energy is the same as that of 3N, independent one-
dimensional harmonic oscillators. If the temperature T is high enough so that
classical mechanics is applicable (and room temperature is usually sufficiently
high for that), application of the equipartition theorem allows one to conclude
immediately that the total mean energy per mole is

E = 3N.[(FkT) X 2]

or E = 3N.iT = 3RT (7-7-2)

Thus the molar specific heat at constant volume becomes

> cV=(%_,)V=3R (7-7-3)

This result asserts that at sufficiently high temperatures all simple solids have
the same molar specific heat equal to 3R (25 joules mole~! deg~!). Historically,
the validity of this result was first discovered empirically and is known as the
law of Dulong and Petit. Table 7-7-1 lists directly measured values of the
molar specific heat ¢, at constant pressure for some solids at room temperature.
The molar specific heat cy at constant volume is somewhat less (by about 5
percent, as calculated in the numerical example of Sec. 5-7).

Table 7-7-1 Values* of c, (joules mole~! deg™!) for some solids at T = 298°K

Solid Cp Solid Cp
Copper 24.5 Aluminum 24 .4
Silver 25.5 Tin (white) 26.4
Lead 26.4 Sulfur (rhombic) 22.4
Zinc 25.4 Carbon (diamond) 6.1

* “American Institute of Physics Handbook,” 2d ed., McGraw-Hill Book Company,
New York, 1963, p. 4-48.

Of course, the preceding arguments are not valid for solids at appreciably
lower temperatures. Indeed,the third law leads to the general result (5-7-19),
which requires that ¢y must approach zero as T— 0. One can obtain an
approximate idea of the behavior of ¢y at all temperatures by making the crude
assumption (first introduced by Einstein) that all atoms in the solid vibrate
with the same angular frequency w. Then «; = mw? for all terms 7 in (7-7-1),
and the mole of solid is equivalent to an assembly of 3N, independent one-
dimensional harmonic oscillators. These can be treated by quantum mechan-
ics so that their total mean energy is just 3N, times that of the single oscillator
discussed in (7-6-12); i.e.,

£ = 3Noho (1

1
§+m) (7-7-4)
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Hence the molar specific heat of the solid on the basis of this simple Einstein

model is given by
0B\ _(0\ o _ 1 (oF
oT)v ~ \98)vdT ~  kT>\o8)v

Cy =
__3Noha| o
- kT? (efre — 1)2
eE 2 er/T
or C"=3R<T> T = 1) (7:7-5)
where R = N,k and where we have written
_ ho _ 9
Bhw = ﬁ = T

by introducing the characteristic ‘“Einstein temperature”

0y = (7-7-6)

If the temperature is so high that kT >> fiwor T >> O, then 65/T « 1 and
expansion of the exponentials in (7-7-5) yields again the classical result

for T > Op, cy — 3R 7-7-7)

On the other hand, if the temperature is so low that kT < hw or T K 6g
then ©z/T > 1 and the exponential factor becomes very large compared to
unity. The specific heat then becomes quite small; more precisely,

2
for T K Op, cy — 3R (%?) e OsIT (7-7-8)

Thus the specific heat should approach zero exponentially as T — 0.
Experimentally the specific heat approaches zero more slowly than this, indeed
cv « T3as T— 0. The reason for this discrepancy is the crude assumption
that all atoms vibrate with the same characteristic frequency. In reality this
is, of course, not the case (even if all the atoms are identical). The reason is
that each atom does not vibrate separately as though it were experiencing a
force due to stationary neighboring atoms; instead, there exist many different
modes of motion in which various groups of atoms oscillate in phase at the same
frequency. It is thus necessary to know the many different possible frequen-
cies of these modes of oscillation (i.e., the values of all the coefficients «; in
(7-7-1)). This problem will be considered in greater detail in Secs. 10-1 and
10-2. But it is qualitatively clear that, although T may be quite small, there
are always some modes of oscillation (those corresponding to sufficiently large
groups of atoms moving together) with a frequency » so low that Aw < kT.
These modes still contribute appreciably to the specific heat and thus prevent
cv from decreasing quite as rapidly as indicated by (7-7-8).

Nevertheless, the very simple Einstein approximation does give a reason-
ably good description of the specific heats of solids. It also makes clear the
existence of a characteristic parameter 6 which depends on the properties of
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Fig. 7°71 p dence of cv ding to the Einstein model.

The points are experimental values of cy for diamond, the fit to the curve
being achieved by choosing 05 = 1320°K (after A. Einstein, Ann. Physik, vol.
22, p. 186 (1907)).

the solid under consideration. For example, if a solid has atoms of low
molecular weight and 1s hard (i.e., relatively incompressible), this imples that
each oscillator has a small mass m and a large spring constant o (i.e., the
spring 1s stiff). Then (7-6-7) shows that the angular frequency of vibration
 of the atoms is large, or that Oz defined in (7-7-6) 1s large. Thus one must
go to higher temperatures before the classical limit ¢y = 3R is reached. This
explains why a solid such as diamond, which consists of relatively light carbon
atoms and 18 quite hard, has at room temperature a specific heat ¢y which is
still considerably smaller than the classical value 3R (sce Table 7-7-1)  Thus
for diamond a reasonably good fit with experiment can be obtained by choos-
ing 0 = 1320°K (see Fig. 7 7-1). For most other solids O lies closer to
5 ~ 300°K. This corresponds to a frequency of vibration w/2% =~ kOz/(2xh)
of about G X 10 cycles/sec, 1.e., to a frequency n the infrared region of the
electromagnetic spectrum.
Before the introduction of quantum ideas it was not possible to under-
stand why the molar specific heats of solids should fall below the classical
equipartition value 3R at low temperatures. In 1907 Einstein’s theory
clarified the mystery and helped to gain acceptance for the new quantum
concepts.



