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where we have used Stirling’s formula since N is large. Here the factor N!
corresponds simply to the number of possible permutations of the particles,
permutations which are physically meaningless when the particles are identical.
It was precisely this factor which we had to mtroduce in an ad hoc fashion in
Sec. 7-3 to save lves from the b of the Gibbs
paradox What we have done in this section is to justify the whole discus-
sion of Sec. 7-3 as being approprmt,e for a gas treated properly by quantum
mechanics in the limit of suffi ly low ion or high p

The partition function is lly correctly eval d by (9-8-9), there
is no Gibbs paradox, and everything is consistent.

A gas in the classical limit where (9-8-6) is satisfied is said to be “non-
degenerate.” On the other hand, if the concentration and temperature are such
that the actual FD or BE distribution (9-8-1) must be used, the gas is said to
be “degenerate.”

IDEAL GAS IN THE CLASSICAL LIMIT

9.9 Quantum states of a single particle

Wave fi i To lete the di ion of the statistical problem it is
necessary to enumerate the possible quantum states s and corresponding
energies ¢, of a single noninteracting particle. Consider this particle to be
nonrelativistic and denote its mass by m, its position vector by r, and its
momentum by p. Suppose that the particle is confined within a container of
volume V within which the particle is subject to no forces. Neglecting for the
time being the effect of the bounding walls, the wave function ¥(r,f) of the
particle is then simply described by a plane wave of the form

W= Ad®TTD = Y(r) et 9-9-1)
which p in a directi: ified by the “wave vector’” x and which
has some constant amplitude A. Here the energy ¢ of the particle is related
to the frequency w by

e = ho (9-9-2)
while its momentum is related to its wave vector x by the de Broglie relation
p=hx (9-9-3)
Thus one has
_p_hae 9.
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The basic justification for these statements is, of course, the fact that
¥ must satisfy the Schrodinger equation

o 0¥
thgy =%¥ (9-9-5)
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Since one can choose the potential energy to be zero inside the container, the
‘Hamiltonian 3¢ reduces there to the kinetic energy alone; i.e.,

where
Putting V= Peiot = ine (9-9-6)

‘ where y does not depend on time, (9-9-5) reduces to the time-independent
: Schrédinger equation

i oY = e 9-9-7)
o oor vy + 2y 20 (9-9-8)

FEquation (9-9-7) shows that ¢ corresponds to the possible values of 3¢ and is
thus the energy of the particle. The wave equation (9-9-8) has solutions of
the general form

¥ = A giturturind = 4 gix-t (9-9-9)

where x is the constant “wave vector” with components Kz, &y, k. BY sub-

stitution of (9-9- 9) into (9-9- 8) one finds that the latter equation is satisfied if
2me

=+t )+ =0

Thus P ©910)

and e is only a function of the magnitude k = |x| of x. Since

h
pY =W =t
one obtains then the relations (9-9-3) and (9-9-4).

Up to now we have idered only the 1 degrees of freedom.
If the particle also has an intrinsic spin angular momentum, the situation is
scarcely more complicated; there is then simply a different function ¢ for each
possible orientation of the particle spin. For example, if the particle has
spin } (e.g., if it is an electron), then there are two possible wave functions
¢ corresponding to the two possible values m = +% of the quantum number
specifying the orientation of the particle’s spin angular momentum.

B lary diti and ion of states The wave function
¥ must satisfy certain boundary conditions. Accordingly, not all possible
values of x (or p) are allowed, but only certain discrete values. The cor-
responding energies of the particle are then also quantized by virtue of (9-9-4).

The boundary conditions can be treated in a very general and simple
way in the usual situation where the 1 losing the gas of particles is
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large enough that its smallest linear dimension L is much greater than the
de Broglie wavelength N = 2r/|x| of the particle under consideration.* It is
then physically clear that the detailed properties of the bounding walls of the
container (e.g., their shape or the nature of the material of which they are
made) must become of negligible significance in describing the behavior of a
particle located well within the container.tf To make the argument more
precise, let us consider any macroscopic volume element which is large com-
pared to A and which lies well within the container so that it is everywhere
removed from the container walls by distances large compared to A\. The
actual wave function anywhere within the container can always be written as a
superposition of plane waves (9-9-1) with all possible wave vectors x. Hence
one can regard the volume element under consideration as being traversed by
waves of the form (9-9-1) traveling in all possible directions specified by «, and
with all possible wavelengths related to the magnitude of x. Since the con-
tainer walls are far away (compared to \), it does not really matter just how
each such wave is ultimately reflected from these walls, or which wave gets
reflected how many times before it passes again through the volume element
under consideration. The number of waves of each kind traversing this
volume element should be quite insensitive to any such details which describe
what happens near the container walls and should be substantially unaffected
if the shape or properties of these walls are modified. Indeed, it is simplest if
one imagines these walls moved out to infinity, i.e., if one effectively eliminates
the walls altogether. One can then avoid the necessity of treating the problem
of reflections at the walls, a problem which is really immaterial in describing
the situation in the volume element under consideration. It does not matter
whether a given wave enters this volume element after having been reflected
somewhere far away, or after coming in from infinity without ever having been
reflected at all.

The foregoing comments show that, for purposes of discussing the proper-
ties of a gas anywhere but in the immediate vicinity of the container walls, the
exact nature of the boundary conditions imposed on each particle should be
unimportant. One can therefore formulate the problem in a way which makes
these boundary conditions as simple as possible. Let us therefore choose the
basic volume V of gas under consideration to be in the shape of a rectangular
parallelepiped with edges parallel to the z, y, z axes and with respective edge
lengths equal to L., L,, L,. Thus V = L.L,L,. The simplest boundary condi-
tions to impose are such that a traveling wave of the form (9-9-1) is indeed an
exact solution of the problem. This requires that the wave (9-9-1) be able to
propagate indefinitely without suffering any reflections. In order to make the
boundary conditions consistent with this simple situation, one can neglect

* This condition is ordinarily very well satisfied for essentially all molecules of a gas
since a typical order of magnitude, already estimated in Sec. 7-4,is A =~ 1 A for an atom of
thermal energy at room temperature.

1 Note that the fraction of particles near the surface of the container, i.e., within a dis-
tance X of its walls, is of the order of AL?/L® = A\/L and is thus ordinarily utterly negligible
for a macroscopic container.
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L,I Fig. 991 The volume under
consideration (indicated in darker
gray) is here considered embedded
in an array of similar volumes
. extending throughout all space.
Wall effects are thus effectively
eliminated.
L,

ly the p of any i walls and can imagine that the
volume of gas under consideration is embedded in an infinite set of similar
volumes in each of which the physical situation is exactly the same (see Fig.
9-9-1). The wave function must then satisfy the conditions

(@ + Lsy y,2) = WT,2)
Wz, y + Ly, 2) = Wz,,2) (9-9-11)

V(9,2 + L) = $(x,9,7)

The requirement that the wave function be the same in any of the parallel-
epipeds should not affect the physics of interest in the one volume under con-
ideration if its di ions are large pared to the de Broglie wavelength X
of the particle.

Remark Suppose that the problem were one-dimensional so that a particle
moves in the z direction in a container of length L.. Then one can eliminate
the effects of reflections by imagining the iner to be bent around in the
form of a circle as shown in Fig. 9-9-2. If L. is very large, the curvature is
quite negligible so that the situation inside the container is substantially the
same as before. But the advantage is that there are now no container walls
to worry about. Hence traveling waves described by (9-9-1) and going
around without reflection are perfectly good solutions of the problem. It is
only necessary to note that the points z and z + L. are now coincident; the
requirement that the wave function be single-valued implies the condition

Y(z+ L) = ¥(2) (9-9-12)

Fig.9-9-2 Aone-dimensional con-
tainer of length L. bent into a circle
by joining its ends.
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This is precisely the analog of (9-9-11) in one dimension. Indeed, one could
regard the condition (9- 9 11) as resulting from the attempc eo ellmlnste
d to be

flections in three di by ining the original
bent into & in four di i (This is, admittedly, difficult to
visualize.)

This point of view, which describes the situation in terms of simple travel-
ing waves satisfying the periodic boundary conditions (9-9-11), is very con-
venient and mathematically exceedingly easy. By virtue of (9-9-1) or (9-9-9)

P = &7 = ettt
To satisfy (9-9-11) one must require that
k(x4 L) = 0 + 2xn,  (n. integral)

or Ky = %rn,
.

Similarly, o =Zn, (9-9-13)
Y

and K = %n,
.

Here the numbers n,, n,, n, are any set of integers—positive, negative, or zero.
The components of x = p/h are thus quantized in discrete units. Accord-
ingly (9-9-4) yields the possible quantized particle energies

2 2h2 2

R R R T 1) @o1
Note that for any kind of macroscopic volume where L., L,, L. are large,
the possible values of the wave-vector components given by (9-9-13) are very
closely spaced. There are thus very many states of the particle (i.e., very
many possible integers n.) corresponding to any small range dx. of a wave-
vector component. It is easy to do some counting. For given values of
#, and «,, it follows by (9-9-13) that the number Az, of possible integers #, for

which «; lies in the range between «, and . + dk, is equal to

An, =§—;d.:, (9-9-15)

The number of translational states p(x) d* for which x is such that it lies in
the range between x and % + dx (i.e., in the range such that its « component is
between «, and «, + dk,, its y component between &, and x, + d,, and its
z component between «, and . + dk.) is then given by the product of the
numbers of possible integers in the three component ranges. Thus

od' = An, A, An, — (ZL—1r dx,) (% dxy) (% dx,) (’éL;)L, diz dry dr,
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or
» pa’x=(—2%d*x (9-9-16)

where d® = dx. dx, d, is the element of volume in “x space.”” Note that the
density of states p is independent of x and proportional to the volume V under
consideration; i.e., the number of states per unit volume, with a wave number x
(or momentum p = hx) lying in some given range, is a constant independent of
the magnitude or shape of the volume.

Remark Note that (9-9-3) yields for the number of translational states
pp d*p in the momentum range between p and p + dp the expression

3,
oo dp = o = s G = VY (0-9-17)
where h = 2rh is the ordinary Planck’s constant. Now V d’p is the volume
of the classical six-dimensional phase space occupied by a particle in a box of
volume V and with momentum between p and p + dp. Thus (9-9-17)
shows that subdivision of this phase space into cells of size h* yields the
correct number of quantum states for the particle.

Various other relations can be deduced from the result (9-9-16). For
example, let us find the number of translational states p, dx for which « is such
that its magnitude || lies in the range between xand x + dx. This is obtained
by summing (9-9-16) over all values of x in this range, i.e., over the volume in
xspace of the portion of spherical shell lying between radiikand k + dx. Thus

2,

peds = (L),am ) = oy d (9-9-18)

Remark Since e depends only on « = [«], (9-9°18) gives immediately,
corresponding to this range of «, the ding number of lational
states pe de for which the energy of the particle lies between € and e + de.
From the equality of states one has

-1

d de
loedd = lpw il = | 5| e = oo 52
By (9-9-4) one then obtains
V. .|dk v @mt
pede = 0| G ae = g G e (0919

Alternative discussion It is, of course, possible to adopt a slightly more
complicated point of view which does take into account explicitly reflections
occurring at the walls of the container. Since the exact boundary conditions
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are immaterial let us, for simplicity, assume that the container is in the shape
of a rectangular parellelepiped with walls located at z = O and « = L,y = 0
andy =Ly, and z = O and z = L.. Let us further assume that these walls
are perfectly reflecting, i.e., that the potential energy U of the particle equals
U = 0 inside the box and U = w outside the box. Then the wave func-
tion ¥ must satisfy the requirement that

y=0o0rL, (9-9-20)

{whemverz=ODrLz
y=0
z=0orL,

The particular solution ¥ = ¢*" of (9-9-9) represents a traveling wave |
and does not satisfy the boundary conditions (9-9-20). But one can con-
struct suitable linear combinations of (9-9-9) (all of which automatically also
satisfy the Schrodinger equation (9-9-8)) which do satisfy the boundary con-
ditions (9-9-20). What this means physically is that in this box with per-

= fectly reflecting parallel walls standing waves are set up which result from the
superposition of traveling waves propagating back and forth.* Mathemati-
cally, since e is a solution of (9-9-8), so is e™***. The combination

(efees — gieen) @ i waz (9-9-21)

vanishes properly when z = 0. It can also be made to vanish for z = L,
provided one chooses «; so that

KoLz = w0

where 7, is any integer. Here the possible values n. should be restricted to
the positive set
n=128...

since a sign reversal of n. (or ;) just turns the function (9-9-20) into
sin (—k;)z = — 8N KT

which is not a distinct new wave function. Thus a standing wave solution is
specified completely by |x|.

Forming standing waves analogous to (9-9-21) also for the y and z direc-
tions, one obtains the product wave function

¥ = A(sin k) (sin kyy)(sin ksz) (9-9-22)

where A is some constant. This satisfies the Schrodinger equation (9-9-8)
and also the boundary conditions (9-9-20) provided that

=X

k=T
2

LR e (9-9-23)

* Simple standing waves of the form (9-9-21) would not be set up if the walls of the
container were not exactly parallel. Hence our previous discussion in terms of traveling
waves criss-crossing the volume in all directions, in & manner insensitive to the precise
boundary conditions, affords & more convenient and general point of view.
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where n,, n, n, are any positive integers. The possible energies of the particle
are then given by

o (02 |

2m \L;? + L2 + L.’)

For given values of x, and «,, the number of translational states with . in the
range between &, and k. + dk; is now equal to

An, = % s (9-9-24)

The number of translational states with x in the range between x and x + dx
is then given by

pdi = An, An, An, = (% ) (’f ) (Ii ax)
or pdn =Ko (9-9-25)

The number of translational states pe d for which x is such that its ‘magnitude
lies in the range between  and « + dx is obtained by summing (9 9-25) over
all values of x in this range, i.e., over the volume in  space of the portion of
spherical shell lying between radii x and « + dx and located in the first octant
where x., &, k: > 0 80 as to satisfy (9-9 23). Thus (9-9-25) yields

.
=% 4"‘;"‘)=2’1,x’dx (9-9-26)

This is the same result as was obtained in (9-9 18). The reason is simple.
By (9-9-24) there are, compared to (9-9-15), twice as many states lying in a
given interval d., but since only positive values of k. are now to be counted,
the number of such intervals is decreased by a compensating factor of 2.

By (9-9-26) it also follows that p. de is the same as in (9 9 19). This
just illustrates the result (which can also be established by rather elaborate
general mathematical arguments)* that this density of states should be the
same irrespective of the shape of the container or of the exact boundary con-
ditions imposed on its surface, so long as the de Broglie wavelength of the
particle is small d to the dimensions of the i

9-10 Evaluation of the partition function
We are now ready to calculate the partition function Z of a monatomic ideal
gas in the classical limit of sufficiently low density or sufficiently high tem-
perature. By (9-8 9) one has
InZ=N@In{—InN+1) (9-10 1)
where f=Y et (9 10-2)
B

*See, for example, R. Courant and D. Hilbert, “Methods of Mathematical Physics,”
vol. 1, pp. 429-445, Interscience Publishers, New York, 1953.



