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with diffusion constants Dθ , Da, and Db. Experiments have observed the complex
two-dimensional spatial diffusion at short times (t . τθ = 1/(2Dθ )), as predicted by the
Langevin theory. The long-time (t� τθ ) spatial diffusion is isotropic with diffusion con-
stant D= (Da+Db)/2.

15.3.A Brownian motion of a harmonic oscillator

An analysis similar to the one for a diffusing Brownian particle can also be performed
for a particle in a harmonic oscillator potential that prevents the particle from diffus-
ing away from the origin and allows a more general analysis of the relationship between
the position and velocity response functions and the power spectra of the fluctua-
tions; see Kappler (1938) and Chandrasekhar (1943). The one-dimensional equation of
motion for a Brownian particle of mass M in a harmonic oscillator potential with spring
constant Mω2

0 is

d2x

dt2
+ γ

dx
dt
+ω2

0x =
F(t)
M

, (33)

where γ (= 6πηa/M) is the damping coefficient of a spherical particle in a fluid with
viscosity η. Just as in the case of diffusive Brownian motion, the force F(t) can be a time-
dependent external force designed to explore the response function or a time-dependent
random force due to collisions with molecules in the fluid to analyze the equilibrium fluc-
tuations. Assuming the system was in equilibrium in the distant past, the position at time
t is given by

x(t)=

t∫
−∞

χxx(t− t ′)F(t ′)dt ′, (34)

where

χxx(s)=
1

Mω1
e−

γ s
2 sin(ω1s) (35)

is the xx response function and ω1 =

√
ω2

0 −
γ 2

4 . 12 The velocity response is given by

v(t)=

t∫
−∞

χvx(t− t ′)F(t ′)dt ′, (36)

12This form of the response function assumes that the oscillator is underdamped. The notation χxx refers to the
notation used in Section 15.6.A in which the response of the position coordinate x depends on the applied field F that
couples to the Hamiltonian via a term−F(t)x(t).



602 Chapter 15 . Fluctuations and Nonequilibrium Statistical Mechanics

where

χvx(s)=
1

M
e−

γ s
2

(
cos(ω1s)−

γ

2ω1
sin(ω1s)

)
. (37)

The response of the system can be decomposed into a sum of independent terms
involving a sinusoidal applied force F̂(ω)eiωt . This takes the form

x̂(ω)= χ̃xx(ω)F̂(ω), (38)

where the frequency-dependent response function can be decomposed into real and
imaginary parts χ̂ ′xx(ω) and χ̂ ′′xx(ω):

χ̃xx(ω)=

∞∫
0

χxx(s)eiωsds= χ̂ ′xx(ω)+ iχ̂ ′′xx(ω), (39a)

χ̂ ′xx(ω)=
ω2

0 −ω
2

M[(ω2
0 −ω

2)2+ γ 2ω2]
, (39b)

χ̂ ′′xx(ω)=
γω

M[(ω2
0 −ω

2)2+ γ 2ω2]
. (39c)

The real part here describes the dispersion and the imaginary part describes the dissipa-
tion, that is, it sets the average rate of energy dissipation due to the sinusoidal external
force.

Now let’s consider the natural fluctuations of the position and the velocity of the parti-
cle in equilibrium due to the random collisions with the atoms in the fluid. We will use the
same Langevin formalism as was used earlier with Brownian motion of a free particle. The
random force averages to zero and is assumed to be delta-function correlated in time:

〈F〉 = 0, (40a)〈
F(t)F(t′)

〉
= 0δ(t− t′), (40b)

where 0 = 2γMkT . With this choice, the long-time average position and velocity of the
particle are both zero,

〈x(t)〉 = 〈v(t)〉 = 0, (41)

and the average of the squares of the position and velocity both obey the equipartition
theorem:

〈x2(t)〉 =
kT

Mω2
0

, 〈v2(t)〉 =
kT
M

. (42a,b)
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The xx correlation function is given by

Gxx(t− t′)=
〈
x(t)x(t′)

〉
=

kT

Mω2
0

exp
(
−γ |t− t ′|

2

)(
cos

(
ω1|t− t ′|

)
+

γ

2ω1
sin

(
ω1|t− t′|

))
, (43)

and the xx power spectrum by

Sxx(ω)=

∞∫
−∞

Gxx(s)eiωsds=
2γkT

M
1(

ω2
0 −ω

2
)2
+ γ 2ω2

. (44)

Note that the imaginary part of the response function, χ̂ ′′xx(ω), in equation (39c) is propor-
tional to the power spectrum Sxx(ω):

χ̂ ′′xx(ω)=
ω

2kT
Sxx(ω). (45)

This result indicates that the dissipation that results from driving a system out of equilib-
rium by an external force is proportional to the power spectrum of the natural fluctuations
that occur in equilibrium. While this result was derived here for a very specific model, it
constitutes an example of the very general fluctuation–dissipation theorem we will derive
in Section 15.6.A.

15.4 Approach to equilibrium: the
Fokker–Planck equation

In our analysis of the Brownian motion we have considered the behavior of a dynamical
variable, such as the position r(t) or the velocity v(t) of a Brownian particle, from the point
of view of fluctuations in the value of the variable. To determine the average behavior of
such a variable, we sometimes invoked an “ensemble” of Brownian particles immersed
in identical environments and undergoing diffusion. A treatment along these lines was
carried out toward the end of Section 15.2, and the most important results of that treat-
ment are summarized in equation (15.2.20) for the density function n(r, t) and in equation
(15.2.22) for the mean square displacement 〈r2(t)〉.

A more generalized way of looking at “the manner in which, and the rate at which,
a given distribution of Brownian particles approaches a state of thermal equilibrium” is
provided by the so-called Master Equation, a simplified version of which is known as the
Fokker–Planck equation. For illustration, we examine the displacement, x(t), of the given
set of particles along the x-axis. At any time t, let f (x, t)dx be the probability that an arbi-
trary particle in the ensemble may have a displacement between x and x+dx. The function
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f (x, t)must satisfy the normalization condition

∞∫
−∞

f (x, t)dx = 1. (1)

The Master Equation then reads:

∂f (x, t)
∂t

=

∞∫
−∞

{−f (x, t)W (x,x′)+ f (x′, t)W (x′,x)}dx′, (2)

where W (x,x′)dx′δt denotes the probability that, in a short interval of time δt, a parti-
cle having displacement x makes a “transition” to having a displacement between x′ and
x′+dx′.13

The first part of the integral in equation (2) corresponds to all those transitions that
remove particles from the displacement x at time t to some other displacement x′ and,
hence, represent a net loss to the function f (x, t); similarly, the second part of the integral
corresponds to all those transitions that bring particles from some other displacement x′

at time t to the displacement x and, hence, represent a net gain to the function f (x, t).14

The structure of the Master Equation is thus founded on very simple and straightfor-
ward premises. Of course, under certain conditions, this equation, or any generalization
thereof (such as the one including velocity, or momentum, coordinates in the argument of
f ), can be reduced to the simple form

∂f
∂t
=−

f − f0

τ
, (3)

which has proved to be a very useful first approximation for studying problems related
to transport phenomena. Here, f0 denotes the equilibrium distribution function (for
∂f /∂t = 0 when f = f0), while τ is the relaxation time that determines the rate at which
the fluctuations in the system drive it to a state of equilibrium.

In studying Brownian motion on the basis of equation (2), we can safely assume that
it is only transitions between “closely neighboring” states x and x′ that have an apprecia-
ble probability of occurring; in other words, the transition probability function W (x,x′) is
sharply peaked around the value x′ = x and falls rapidly to zero away from x. Denoting the
interval (x′− x) by ξ , we may write

W (x,x′)→W (x;ξ), W (x′,x)→W (x′;−ξ) (4)

13We are tacitly assuming here a “Markovian” situation where the transition probability function W (x,x′) depends
only on the present position x (and, of course, the subsequent position x′) of the particle but not on the previous history
of the particle.

14In the case of fermions, an account must be taken of the Pauli exclusion principle, which controls the “occupation
of single-particle states in the system”; for instance, we cannot, in that case, consider a transition that tends to transfer a
particle to a state that is already occupied. This requires an appropriate modification of the Master Equation.
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where W (x;ξ) and W (x′;−ξ) have sharp peaks around the value ξ = 0 and fall rapidly to
zero elsewhere.15 This enables us to expand the right side of (2) as a Taylor series around
ξ = 0. Retaining terms up to second order only, we obtain

∂f (x, t)
∂t

=−
∂

∂x
{µ1(x)f (x, t)}+

1
2
∂2

∂x2
{µ2(x)f (x, t)}, (5)

where

µ1(x)=

∞∫
−∞

ξW (x;ξ)dξ =
〈δx〉δt

δt
= 〈vx〉 (6)

and

µ2(x)=

∞∫
−∞

ξ2W (x;ξ)dξ =
〈(δx)2〉δt

δt
. (7)

Equation (5) is the so-called Fokker–Planck equation, which occupies a classic place in the
field of Brownian motion and fluctuations.

We now consider a specific system of Brownian particles (of negligible mass), each par-
ticle being acted on by a linear restoring force, Fx =−λx, and having mobility B in the
surrounding medium; the assumption of negligible mass implies that the relaxation time
τ(=MB) of equation (15.3.4) is very small, so the time t here may be regarded as very large
in comparison with that τ . The mean viscous force,−〈vx〉/B, is then balanced by the linear
restoring force, with the result that

−
〈vx〉

B
+Fx = 0 (8)

and hence

〈vx〉 ≡ µ1(x)=−λBx. (9)

Next, in view of equation (15.3.10), we have

〈(δx)2〉
δt

≡ µ2(x)= 2BkT ; (10)

it will be noted that the influence of λ on this quantity is being neglected here. Substituting
(9) and (10) into (5), we obtain

∂f
∂t
= λB

∂

∂x
(xf )+BkT

∂2f

∂x2
. (11)

15Clearly, this assumption limits our analysis to what may be called the “Brownian motion approximation,” in which
the object under consideration is presumed to be on a very different scale of magnitude than the molecules constituting
the environment. It is obvious that if one tries to apply this sort of analysis to “understand” the behavior of molecules
themselves, one cannot hope for anything but a “crude, semiquantitative” outcome.
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Now we apply equation (11) to an “ensemble” of Brownian particles, initially concen-
trated at the point x = x0. To begin with, we note that, in the absence of the restoring force
(λ= 0), equation (11) reduces to the one-dimensional diffusion equation

∂f
∂t
=D

∂2f

∂x2
(D= BkT), (12)

which conforms to our earlier results (15.2.19) and (15.3.11). The present derivation shows
that the process of diffusion is essentially a “random walk, at the molecular level.” In view
of equation (15.2.20), the function f (x, t) here would be

f (x, t)=
1

(4πDt)1/2
exp

{
−
(x− x0)

2

4Dt

}
, (13)

with

x = x0 and x2 = x2
0 + 2Dt; (14)

the last result shows that the mean square distance traversed by the particle(s) increases
linearly with time, without any upper limit on its value. The restoring force, however, puts
a check on the diffusive tendency of the particles. For instance, in the presence of such
a force (λ 6= 0), the terminal distribution f∞ (for which ∂f /∂t = 0) is determined by the
equation

∂

∂x
(xf∞)+

kT
λ

∂2f∞
∂x2

= 0, (15)

which gives

f∞(x)=
(

λ

2πkT

)1/2

exp

(
−
λx2

2kT

)
, (16)

with

x = 0 and x2 = kT/λ. (17)

The last result agrees with the fact that the mean square value of x must ultimately comply

with the equipartition theorem, namely (1
2λx2)

∞
=

1
2 kT . From the point of view of equilib-

rium statistical mechanics, if we regard Brownian particles with kinetic energy p2
x/2m and

potential energy 1
2λx2 as loosely coupled to a thermal environment at temperature T , then

we may directly write

feq(x,px)dxdpx ∝ e−(p
2
x/2m+λx2/2)/kT dxdpx. (18)

On integration over px, expression (18) leads directly to the distribution function (16).
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FIGURE 15.5 The distribution function (19) at times t = 0, t = 1/(2λB), and t =∞.

The general solution of equation (11), relevant to the ensemble under consideration, is
given by

f (x, t)=
{

λ

2πkT(1− e−2λBt)

}1/2

exp

{
−
λ(x− x0e−λBt)2

2kT(1− e−2λBt)

}
, (19)

with

x = x0e−λBt and x2 = x2
0e−2λBt

+
kT
λ
(1− e−2λBt); (20)

in the limit λ→ 0, we recover the purely “diffusive” situation, as described by equa-
tions (13) and (14), while for t� (λB)−1, we approach the “terminal” situation, as
described by equations (16) and (17). Figure 15.5 shows the manner in which an ensem-
ble of Brownian particles approaches a state of equilibrium under the combined influence
of the restoring force and the molecular bombardment; clearly, the relaxation time of the
present process is∼ (λB)−1.

A physical system to which the foregoing theory is readily applicable is provided by the
oscillating component of a moving-coil galvanometer. Here, we have a coil of wire and a
mirror that are suspended by a fine fiber, so they can rotate about a vertical axis. Random,
incessant collisions of air molecules with the suspended system produce a succession of
torques of fluctuating intensity; as a result, the angular position θ of the system continu-
ally fluctuates and the system exhibits an unsteady zero. This is clearly another example of
the Brownian motion! The role of the viscous force in this case is played by the mechanism
of air damping (or, else, electromagnetic damping) of the galvanometer, while the restor-
ing torque, Nθ =−cθ , arises from the torsional properties of the fiber. In equilibrium, we
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expect that

(
1
2

cθ2

)
=

1
2

kT , that is, θ2 =
kT
c

; (21)

compare this to equation (17). An experimental determination of the mean square deflec-
tion, θ2, of such a system was made by Kappler (1931) who, in turn, applied his results to
derive, with the help of equation (21), an empirical value for the Boltzmann constant k (or,
for that matter, the Avogadro number NA). The system used by Kappler had a moment of
inertia I = 4.552× 10−4 gcm2 and a time period of oscillation τ = 1379s; accordingly, the
constant c of the restoring torque had a value given by the formula τ = 2π(I/c)1/2, so that

c = 4π2(I/τ2)= 9.443× 10−9gcm2s−2/rad.

The observed value of θ2, at a temperature of 287.1 K, was 4.178× 10−6. Substituting these
numbers in (21), Kappler obtained: k = 1.374× 10−16 erg K−1. And, since the gas constant
R is equal to 8.31× 107 erg K−1mole−1, he obtained for the Avogadro number: NA = R/k =
6.06× 1023 mole−1.

One might expect that by suspending the mirror system in an “evacuated” casing the
fluctuations caused by the collisions of the air molecules could be severely reduced. This
is not true because even at the lowest possible pressures there still remain a tremendously
large number of molecules in the system that keep the Brownian motion “alive.” The inter-
esting part of the story, however, is that the mean square deflection of the system, caused
by molecular bombardment, is not at all affected by the density of the molecules; for a sys-
tem in equilibrium, it is determined solely by the temperature. This situation is depicted,
rather dramatically, in Figure 15.6 where we have two traces of oscillations of the mir-
ror system, the upper one having been taken at the atmospheric pressure and the lower
one at a pressure of 10−4 mm of mercury. The root-mean-square deviation is very nearly
the same in the two cases! Nevertheless, one does note a difference of “quality” between
the two traces that relates to the “frequency spectrum” of the fluctuations and arises
for the following reason. When the density of the surrounding gas is relatively high, the
molecular impulses come in rapid succession, with the result that the individual deflec-
tions of the system are large in number but small in magnitude. As the pressure is lowered,
the time intervals between successive impulses become longer, making the individual
deflections smaller in number but larger in magnitude. However, the overall deflection,
observed over a long interval of time, remains essentially the same.

FIGURE 15.6 Two traces of the thermal oscillations of a mirror system suspended in air; the upper trace was taken
at the atmospheric pressure, the lower one at a pressure of 10−4 mm of mercury.


