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Fluctuations and Nonequilibrium

Statistical Mechanics

In this course we have been mostly concerned with the evaluation of statistical averages
of the various physical quantities; these averages represent, with a high degree of accu-
racy, the results expected from relevant measurements on the given system in equilibrium.
Nevertheless, there do occur deviations from, or fluctuations about, these mean values.
Even though they are generally small, their study is of great physical interest for several
reasons.

First, such a study enables us to develop a mathematical scheme with the help of
which the magnitude of the relevant fluctuations, under a variety of physical situations,
can be estimated. Not surprisingly, we find that while in a single-phase system the fluctu-
ations are thermodynamically negligible but they can assume considerable importance in
multiphase systems, especially in the neighborhood of a critical point. In the latter case,
we obtain a rather high degree of spatial correlation among the molecules of the system
which, in turn, gives rise to phenomena such as critical opalescence.

Second, it provides a natural framework for understanding a class of phenomena that
come under the heading “Brownian motion”; these phenomena relate properties such as
the mobility of a fluid system, its coefficient of diffusion, and so on, with temperature
through the so-called Einstein relations. The mechanism of Brownian motion is vital in for-
mulating, and in a certain sense answering, questions as to how “a given physical system,
which is not in a state of equilibrium, finally approaches such a state” while “a physical
system, which is already in a state of equilibrium, persists to stay in that state.”

Third, the study of fluctuations, as a function of time, leads to the concept of certain
“correlation functions” that play a vital role in relating the dissipative properties of a sys-
tem, such as the viscous resistance of a fluid or the electrical resistance of a conductor,
with the microscopic properties of the system in a state of equilibrium; this relation-
ship (between irreversible processes on one hand and equilibrium properties on the
other) manifests itself in the so-called fluctuation–dissipation theorem. At the same time, a
study of the “frequency spectrum” of fluctuations, which is related to the time-dependent
correlation function through the fundamental theorem of Wiener and Khintchine, is of
considerable value in assessing the “noise” met with in electrical circuits as well as in the
transmission of electromagnetic signals.
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15.1 Equilibrium thermodynamic fluctuations
We begin by deriving a probability distribution law for the fluctuations of certain basic
thermodynamic quantities pertaining to a given physical system; the mean square fluctu-
ations can then be evaluated, in a straightforward manner, with the help of this law. We
assume that the given system, which may be referred to as 1, is embedded in a reservoir,
which may be referred to as 2, such that a mutual exchange of energy, and of volume, can
take place between the two; of course, the overall energy E and the overall volume V are
supposed to be fixed. For convenience, we do not envisage an exchange of particles here,
so the numbers N1 and N2 remain individually constant. The equilibrium division of E into
E1 and E2, and of V into V 1 and V 2, must be such that parts 1 and 2 of the composite sys-
tem (1+ 2) have a common temperature T∗ and a common pressure P∗; see Sections 1.2
and 1.3, especially equations (1.3.6). Of course, the entropy of the composite system will
have its largest value in the equilibrium state; in any other state, such as the one character-
ized by a fluctuation, it must have a lower value. If1S denotes the deviation in the entropy
of the composite system from its equilibrium value S0, then

1S≡ S− S0 = k ln�f − k ln�0, (1)

where �f (or �0) denotes the number of distinct microstates of the system (1+ 2) in the
presence (or in the absence) of a fluctuation from the equilibrium state; see equation
(1.2.6). The probability that the proposed fluctuation may indeed occur is then given by

p∝�f ∝ exp(1S/k); (2)

see Section 3.1, especially equation (3.1.3). In terms of other thermodynamic quantities,
we may write

1S=1S1+1S2 =1S1+

f∫
0

dE2+P2dV2

T2
; (3)

note that the pressure P2 and the temperature T2 of the reservoir may, in principle, vary
during the build-up of the fluctuation! Now, even if the fluctuation is sizable from the point
of view of system 1, it will be small from the point of view of 2. The “variables” P2 and T2

may, therefore, be replaced by the constants P∗ and T∗, respectively; at the same time, the
increments dE2 and dV2 may be replaced by −dE1 and −dV1, respectively. Equation (3)
then becomes

1S=1S1− (1E1+P∗1V1)/T∗. (4)

Accordingly, formula (2) takes the form

p∝ exp{−(1E1−T∗1S1+P∗1V1)/kT∗}. (5)
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Clearly, the probability distribution law (5) does not depend, in any manner, on the
peculiarities of the reservoir in which the given system was supposedly embedded. For-
mula (5), therefore, applies equally well to a system that attained equilibrium in a statistical
ensemble (or, for that matter, to any macroscopic part of a given system itself). Conse-
quently, we may drop the suffix 1 from the symbols 1E1,1S1, and 1V1, and the star from
the symbols P∗ and T∗, and write

p∝ exp{−(1E−T1S+P1V )/kT}. (6)

In most cases, the fluctuations are exceedingly small in magnitude; the quantity 1E
may, therefore, be expanded as a Taylor series about the equilibrium value (1E)0 = 0, with
the result

1E =
(
∂E
∂S

)
0
1S+

(
∂E
∂V

)
0
1V

+
1
2

[(
∂2E

∂S2

)
0

(1S)2+ 2

(
∂2E
∂S∂V

)
0

1S1V +

(
∂2E

∂V 2

)
0

(1V )2
]
+ ·· · (7)

Substituting (7) into (6) and retaining terms up to second order only, we obtain

p∝ exp{−(1T1S−1P1V )/2kT}; (8)

here, use has been made of the relations(
∂E
∂S

)
0
= T ,

(
∂E
∂V

)
0
=−P, (9)

and of the fact that the expression within the square brackets in (7) is equivalent to

1

(
∂E
∂S

)
0
1S+1

(
∂E
∂V

)
0
1V =1T1S−1P1V . (10)

With the help of (8), the mean square fluctuations of various physical quantities and the
statistical correlations among different fluctuations can be readily calculated. We note,
however, that of the four 1 terms appearing in this formula only two can be chosen inde-
pendently; the other two must assume the role of “derived quantities.” For instance, if we
choose1T and1V to be the independent variables, then1S and1P can be written as

1S=
(
∂S
∂T

)
V
1T +

(
∂S
∂V

)
T
1V =

CV

T
1T +

(
∂P
∂T

)
V
1V (11)

and

1P =
(
∂P
∂T

)
V
1T +

(
∂P
∂V

)
T
1V =

(
∂P
∂T

)
V
1T −

1
κT V

1V , (12)
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κT being the isothermal compressibility of the system. Substituting (11) and (12) into (8),
we get

p∝ exp
{
−

CV

2kT 2
(1T)2−

1
2kTκT V

(1V )2
}

, (13)

which shows that the fluctuations in T and V are statistically independent, Gaussian
variables! A quick glance at (13) yields the results

(1T)2 =
kT 2

CV
, (1V )2 = kTκT V , (14a)

while

(1T1V )= 0. (14b)

Similarly, if we choose 1S and 1P as our independent variables, we are led to the
distribution law

p∝ exp
{
−

1
2kCP

(1S)2−
κSV
2kT

(1P)2
}

, (15)

which gives

(1S)2 = kCP , (1P)2 =
kT
κSV

, (16a)

while

(1S1P)= 0; (16b)

here, κS denotes the adiabatic compressibility of the system.
We note that, in general, the mean square fluctuation of an extensive quantity is directly

proportional to the size of the system while that of an intensive quantity is inversely pro-
portional to the same; in either case, the relative, root-mean-square fluctuation of any
quantity is inversely proportional to the square root of the size of the system. Thus, except
for situations such as the ones met with in a critical region, normal fluctuations are ther-
modynamically negligible. This does not mean that fluctuations are altogether irrelevant
to the physical phenomena taking place in the system; in fact, as will be seen in the sequel,
the very presence of fluctuations at the microscopic level is of fundamental importance to
several properties of the system displayed at the macroscopic level!

With the help of the foregoing results, we may evaluate the mean square fluctuation in
the energy of the system. With T and V as independent variables, we have

1E =
(
∂E
∂T

)
V
1T +

(
∂E
∂V

)
T
1V . (17)
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Squaring this expression and taking averages, keeping in mind equations (14), we get

(1E)2 = kT 2CV + kTκT V
{(

∂E
∂V

)
T

}2

= kT 2CV + kTκT

(
N2

V

){(
∂E
∂N

)
T

}2

. (18)

Now, the results derived in the preceding paragraphs determine the fluctuations of the
various physical quantities pertaining to any macroscopic subsystem of a given system,
provided that the number of particles in the subsystem remains fixed. The expression (14b)
for (1V )2 may, therefore, be used to derive an expression for the mean square fluctuation
of the variable v (the volume per particle) and the variable n (the particle density) of the
subsystem. We readily obtain

(1v)2 = kTκT V /N2, (1n)2 =
1

v4 (1v)2 = kTκT N2/V 3; (19)

note that the last result obtained here is in complete agreement with equation (4.5.7),
which was derived on the basis of the grand canonical ensemble. A little reflection shows
that this result applies equally well to a subsystem with a fixed volume V and a fluctuating
number of particles N . The mean square fluctuation in N is then given by

(1N)2 = V 2(1n)2 = kTκT N2/V . (20)

Substituting (20) into (18), we obtain once again the grand canonical result for (1E)2,
namely

(1E)2 = kT 2CV + (1N)2{(∂E/∂N)T }
2, (21)

as in equation (4.5.14).
In passing, we note that the first part of expression (21) denotes the mean square fluc-

tuation in the energy E of a subsystem for which both N and V are fixed, just as we have
in the canonical ensemble (N ,V ,T). Conversely, if we assume the energy E to be fixed,
then the temperature of the subsystem will fluctuate, and the mean square value of the
quantity 1T will be given by (kT 2CV ) divided by the square of the thermal capacity of the
subsystem. The net result will, therefore, be (kT 2/CV ), which is the same as in (14a).

15.2 The Einstein–Smoluchowski theory
of the Brownian motion

The term “Brownian motion” derives its name from the botanist Robert Brown who, in
1828, made careful observations on the tiny pollen grains of a plant under a microscope. In
his own words: “While examining the form of the particles immersed in water, I observed
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many of them very evidently in motion. These motions were such as to satisfy me . . . that
they arose neither from currents in the fluid nor from its gradual evaporation, but belonged
to the particle itself.” We now know that the real source of this motion lies in the incessant,
and more or less random, bombardment of the Brownian particles, as these grains (or,
for that matter, any colloidal suspensions) are usually referred to, by the molecules of the
surrounding fluid. It was Einstein who, in a number of papers (beginning in 1905), first
provided a sound theoretical analysis of the Brownian motion on the basis of the so-called
“random walk problem” and thereby established a far-reaching relationship between the
irreversible nature of this phenomenon and the mechanism of molecular fluctuations.

To illustrate the essential theme of Einstein’s approach, we first consider the problem in
one dimension. Let x(t) denote the position of the Brownian particle at time t, given that
its position coincided with the point x = 0 at time t = 0. To simplify matters, we assume
that each molecular impact (which, on an average, takes place after a time τ ∗) causes the
particle to jump a (small) distance l — of constant magnitude — in either a positive or
negative direction along the x-axis. It seems natural to regard the possibilities 1x =+l
and 1x =−l to be equally likely; though somewhat less natural, we may also regard the
successive impacts on, and hence the successive jumps of, the Brownian particle to be
mutually uncorrelated. The probability that the particle is found at the point x at time t is
then equal to the probability that, in a series of n(= t/τ ∗) successive jumps, the particle
makes m(= x/l) more jumps in the positive direction of the x-axis than in the negative,
that is, it makes 1

2 (n+m) jumps in the positive direction and 1
2 (n−m) in the negative.1

The desired probability is then given by the binomial expression

pn(m)=
n!{

1
2 (n+m)

}
!
{

1
2 (n−m)

}
!

(
1
2

)n

, (1)

with the result that

m= 0 and m2 = n. (2)

Thus, for t� τ ∗, we have for the net displacement of the particle

x(t)= 0 and x2(t)= l2 t
τ∗
∝ t1. (3)

Accordingly, the root-mean-square displacement of the particle is proportional to the
square root of the time elapsed:

xr.m.s. =
√(

x2(t)
)
= l
√
(t/τ∗)∝ t1/2. (4)

It should be noted that the proportionality of the net overall displacement of the Brownian
particle to the square root of the total number of elementary steps is a typical consequence

1Since the quantities x and t are macroscopic in nature while l and τ ∗ are microscopic, the numbers n and m are
much larger than unity; consequently, it is safe to assume that they are integral as well.



15.2 The Einstein–Smoluchowski theory of the Brownian motion 589

of the random nature of the steps and it manifests itself in a large variety of phenomena in
nature. In contrast, if the successive steps were fully coherent (or else if the motion were
completely predictable and reversible over the time interval t),2 then the net displacement
of the Brownian particle would have been proportional to t1.

Smoluchowski’s approach to the problem of Brownian motion, which appeared in
1906, was essentially the same as that of Einstein; the difference lay primarily in the math-
ematical procedure. Smoluchowski introduced the probability function pn(x0|x), which
denotes the “probability that, after a series of n steps, the Brownian particle, initially at
the point x0, reaches the point x”; the number x here denotes the distance traveled by the
Brownian particle in terms of the length of the elementary step. Clearly,

pn(x0|x)=
∞∑

z=−∞

pn−1(x0|z)p1(z|x) (n≥ 1); (5)

moreover, since a single step is equally likely to take the particle to the right or to the left,

p1(z|x)=
1
2
δz,x−1+

1
2
δz,x+1, (6)

while

p0(z|x)= δz,x. (7)

Equation (5) is known as the Smoluchowski equation. To solve it, we introduce a generating
function Qn(ξ), namely

Qn(ξ)=

∞∑
x=−∞

pn(x0|x)ξ
x−x0 , (8)

from which it follows that

Q0(ξ)=

∞∑
x=−∞

p0(x0|x)ξ
x−x0 =

∞∑
x=−∞

δx0,xξ
x−x0 = 1. (9)

Substituting (6) into (5), we obtain

pn(x0|x)=
1
2

pn−1(x0|x− 1)+
1
2

pn−1(x0|x+ 1). (10)

2The term “reversible” here is related to the fact that the Newtonian equations of motion, which govern this class
of phenomena, preserve their form if the direction of time is reversed (i.e., if we change t to −t, etc.); alternatively, one
would expect that if at any instant of time we reverse the velocities of the particles in a given mechanical system, the
system would “retrace” its path exactly. This is not true of equations describing “irreversible” phenomena, such as the
diffusion equation (19), with which the phenomenon of Brownian motion is intimately related.
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Multiplying (10) by ξx−x0 and adding over all x, we obtain the recurrence relation

Qn(ξ)=
1
2

[ξ + (1/ξ)]Qn−1(ξ), (11)

so that, by iteration,

Qn(ξ)=

{
1
2

[ξ + (1/ξ)]
}n

Q0(ξ)= (1/2)n[ξ + (1/ξ)]n. (12)

Expanding this expression binomially and comparing the result with (8), we get

pn(x0|x)=
(

1
2

)n n!

{
1
2 (n+ x− x0)}! { 1

2 (n− x+ x0)}!
for |x− x0| ≤ n

0 for |x− x0|> n. (13)

Identifying (x− x0)with m, we find this result to be in complete agreement with our previ-
ous result (1).3 Accordingly, any conclusions drawn from the Smoluchowski approach will
be the same as the ones drawn from the Einstein approach.

To obtain an asymptotic form of the function pn(m), we apply Stirling’s formula,
n!≈ (2πn)1/2(n/e)n, to the factorials appearing in (1), with the result

lnpn(m)≈
(

n+
1
2

)
lnn−

1
2
(n+m+ 1) ln

{
1
2
(n+m)

}
−

1
2
(n−m+ 1) ln

{
1
2
(n−m)

}
−n ln2−

1
2

ln(2π).

For m� n (which is generally true because m= 0 and mr.m.s. = n1/2, while n� 1), we
obtain

pn(m)≈
2

√
(2πn)

exp(−m2/2n). (14)

Taking x to be a continuous variable (and remembering that pn(m)≡ 0 either for even val-
ues of m or for odd values of m, so that in the distribution (14),1m= 2 and not 1), we may
write this result in the Gaussian form:

p(x)dx =
dx

√
(4πDt)

exp

(
−

x2

4Dt

)
, (15)

where

D= l2/2τ∗. (16)

3It is easy to recognize the additional fact that if n is even, then pn(m)≡ 0 for odd m, and if n is odd, then pn(m)≡ 0
for even m.
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Later on, we shall see that the quantity D introduced here is identical to the diffusion
coefficient of the given system; equation (16) connects this quantity with the microscopic
quantities l and τ ∗. To appreciate this connection, one has simply to note that the prob-
lem of Brownian motion can also be looked on as a problem of “diffusion” of Brownian
particles through the medium of the fluid; this point of view is also due to Einstein. How-
ever, before we embark on these considerations, we would like to present here the results
of an actual observation made on the Brownian motion of a spherical particle immersed
in water; see Lee, Sears, and Turcotte (1963). It was found that the 403 values of the net dis-
placement 1x of the particle, observed after successive intervals of 2 seconds each, were
distributed as follows:

Displacement 1x, in units of µ(= 10−4cm) Frequency of occurrence n

less than−5.5 0

between−5.5 and−4.5 1

between−4.5 and−3.5 2

between−3.5 and−2.5 15

between−2.5 and−1.5 32

between−1.5 and−0.5 95

between−0.5 and+0.5 111

between+0.5 and+1.5 87

between+1.5 and+2.5 47

between+2.5 and+3.5 8

between+3.5 and+4.5 5

greater than+4.5 0

The mean square value of the displacement here turns out to be: (1x)2 = 2.09×
10−8cm2. The observed frequency distribution has been plotted as a “block diagram” in
Figure 15.1. We have included, in this figure, a Gaussian curve based on the observed value
of the mean square displacement; we find that the experimental data fit the theoretical
curve fairly well. We can also derive here an experimental value for the diffusion coefficient
of the medium; we obtain: D= (1x)2/2t = 5.22× 10−9cm2/s.4

We now turn to the study of the Brownian motion from the point of view of diffusion.
We denote the number density of the Brownian particles in the fluid by the symbol n(r, t)
and their current density by j(r, t){= n(r, t)v(r, t)}; then, according to Fick’s law,

j(r, t)=−D∇n(r, t), (17)

4In the next section we shall see that, for a spherical particle, D= kT/6πηa where η is the coefficient of viscosity
of the medium and a the radius of the Brownian particle. In the case under study, T ' 300K, η ' 10−2 poise, and a'
4× 10−5 cm. Substituting these values, we obtain for the Boltzmann constant: k ' 1.3× 10−16erg/K.
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FIGURE 15.1 The statistical distribution of the successive displacements, 1x, of a Brownian particle immersed in
water: (1x)r.m.s. ' 1.45µ.

where D denotes for the diffusion coefficient of the medium. We also have here the
equation of continuity, namely

∇ · j(r, t)+
∂n(r, t)
∂t

= 0. (18)

Substituting (17) into (18), we obtain the diffusion equation

∇
2n(r, t)−

1
D
∂n(r, t)
∂t

= 0. (19)

Of the various possible solutions of this equation, the one relevant to the present situa-
tion is

n(r, t)=
N

(4πDt)3/2
exp

(
−

r2

4Dt

)
, (20)

which is a spherically symmetric solution and is already normalized:

∞∫
0

n(r, t)4πr2dr =N , (21)

N being the total number of (Brownian) particles immersed in the fluid. A comparison
of the (three-dimensional) result (20) with the (one-dimensional) result (15) brings out
most vividly the relationship between the random walk problem on one hand and the
phenomenon of diffusion on the other.

It is clear that in the last approach we have considered the motion of an “ensemble” of
N Brownian particles placed under “equivalent” physical conditions, rather than consid-
ering the motion of a single particle over a length of time (as was done in the random walk
approach). Accordingly, the averages of the various physical quantities obtained here will
be in the nature of “ensemble averages”; they must, of course, agree with the long-time
averages of the same quantities obtained earlier.
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Now, by virtue of the distribution (20), we obtain

〈r(t)〉 = 0; 〈r2(t)〉 =
1
N

∞∫
0

n(r, t)4πr4dr = 6Dt ∝ t1, (22)

in complete agreement with our earlier results, namely

x(t)= 0; x2(t)= l2t/τ∗ = 2Dt ∝ t1. (23)

Thus, the “ensemble” of the Brownian particles, initially concentrated at the origin, “dif-
fuses out” as time increases, the nature and the extent of its spread at any time t being given
by equations (20) and (22), respectively. The diffusion process, which is clearly irrever-
sible, gives us a fairly good picture of the statistical behavior of a single particle in the
ensemble. However, the important thing to bear in mind is that, whether we focus our
attention on a single particle in the ensemble or look at the ensemble as a whole, the ulti-
mate source of the phenomenon lies in the incessant, and more or less random, impacts
received by the Brownian particles from the molecules of the fluid. In other words, the
irreversible character of the phenomenon ultimately arises from the random, fluctuating
forces exerted by the fluid molecules on the Brownian particles. This leads us to another
systematic theory of the Brownian motion, namely the theory of Langevin (1908). For
a detailed analysis of the problem, see Uhlenbeck and Ornstein (1930), Chandrasekhar
(1943, 1949), MacDonald (1948–1949), and Wax (1954).

15.3 The Langevin theory of the
Brownian motion

We consider the simplest case of a “free” Brownian particle, surrounded by a fluid envi-
ronment; the particle is assumed to be free in the sense that it is not acted on by any other
force except the one arising from the molecular bombardment. The equation of motion of
the particle will then be

M
dv
dt
=F (t), (1)

where M is the particle mass, v(t) the particle velocity, and F (t) the force acting on the
particle by virtue of the impacts received from the fluid molecules. Langevin suggested
that the force F (t)may be written as a sum of two parts: (i) an “averaged-out” part, which
represents the viscous drag,−v/B, experienced by the particle (accordingly, B is the mobil-
ity of the system, that is, the drift velocity acquired by the particle by virtue of a unit
“external” force)5 and (ii) a “rapidly fluctuating” part F(t) which, over long intervals of

5If Stokes’s law is applicable, then B= 1/(6πηa), where η is the coefficient of viscosity of the fluid and a the radius of
the particle (assumed spherical).
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time (as compared to the characteristic time τ ∗), averages out to zero; thus, we may write

M
dv
dt
=−

v
B
+F(t); F(t)= 0. (2)

Taking the ensemble average of (2), we obtain6

M
d
dt
〈v〉 = −

1
B
〈v〉, (3)

which gives

〈v(t)〉 = v(0)exp(−t/τ) (τ =MB). (4)

Thus, the mean drift velocity of the particle decays, at a rate determined by the relaxation
time τ , to the ultimate value zero. We note that this result is typical of the phenomena
governed by dissipative properties such as the viscosity of the fluid; the irreversible nature
of the result is also evident.

Dividing (2) by the mass of the particle, we obtain an equation for the instantaneous
acceleration, namely

dv
dt
=−

v
τ
+A(t); A(t)= 0. (5)

We now construct the scalar product of (5) with the instantaneous position r of the particle
and take the ensemble average of the product. In doing so, we make use of the facts that
(i) r · v = 1

2 (dr2/dt), (ii) r · (dv/dt)= 1
2 (d

2r2/dt2)− v2, and (iii) 〈r ·A〉 = 0.7 We obtain

d2

dt2
〈r2
〉+

1
τ

d
dt
〈r2
〉 = 2〈v2

〉. (6)

If the Brownian particle has already attained thermal equilibrium with the molecules of
the fluid, then the quantity 〈v2

〉 in this equation may be replaced by its equipartition value
3kT/M . The equation is then readily integrated, with the result

〈r2
〉 =

6kTτ2

M

{
t
τ
− (1− e−t/τ )

}
, (7)

6The process of “averaging over an ensemble” implies that we are imagining a large number of systems similar to the
one originally under consideration and are taking an average over this collection at any time t. By the very nature of the
function F(t), the ensemble average 〈F(t)〉must be zero at all times.

7This is so because we have no reason to expect a statistical correlation between the position r(t) of the Brownian
particle and the force F(t) exerted on it by the molecules of the fluid; see, however, Manoliu and Kittel (1979). Of course,
we do expect a correlation between the variables v(t) and F(t); consequently, 〈v ·F〉 6= 0 (see Problem 15.7).
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where the constants of integration have been so chosen that at, t = 0, both 〈r2
〉 and its first

time-derivative vanish. We observe that, for t� τ ,

〈r2
〉 '

3kT
M

t2
= 〈v2

〉t2, (8)8

which is consistent with the reversible equations of motion whereby one would simply
have

r = vt. (9)

On the other hand, for t� τ ,

〈r2
〉 '

6kTτ
M

t = (6BkT)t, (10)9

which is essentially the same as the Einstein–Smoluchowski result (15.2.22); incidentally,
we obtain here a simple, but important, relationship between the coefficient of diffusion
D and the mobility B, namely

D= BkT , (11)

which is generally referred to as the Einstein relation.
The irreversible character of equation (10) is self-evident; it is also clear that it arises

essentially from the viscosity of the medium. Moreover, the Einstein relation (11), which
connects the coefficient of diffusion D with the mobility B of the system, tells us that the
ultimate source of the viscosity of the medium (as well as of diffusion) lies in the random,
fluctuating forces arising from the incessant motion of the fluid molecules; see also the
fluctuation–dissipation theorem of Section 15.6.

In this context, if we consider a particle of charge e and mass M moving in a viscous
fluid under the influence of an external electric field of intensity E, then the “coarse-
grained” motion of the particle will be determined by the equation

M
d
dt
〈v〉 = −

1
B
〈v〉+ eE; (12)

compare this to equation (3). The “terminal” drift velocity of the particle would now be
given by the expression (eB)E, which prompts one to define (eB) as the “mobility” of the
system and denote it by the symbol µ. Consequently, one obtains, instead of (11),

D=
kT
e
µ, (13)

which, in fact, is the original version of the Einstein relation; sometimes this is also referred
to as the Nernst relation.

8Note that the limiting solution (8) corresponds to “dropping out” the second term on the left side of equation (6).
9Note that the limiting solution (10) corresponds to “dropping out” the first term on the left side of equation (6).
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So far we have not felt any direct influence of the rapidly fluctuating term A(t) that
appears in the equation of motion (5) of the Brownian particle. For this, let us try to eval-
uate the quantity 〈v2(t)〉 which, in the preceding analysis, was assumed to have already
attained its “limiting” value 3kT/M . For this evaluation we replace the variable t in equa-
tion (5) by u, multiply both sides of the equation by exp(u/τ), rearrange and integrate over
du between the limits u= 0 and u= t; we thus obtain the formal solution

v(t)= v(0)e−t/τ
+ e−t/τ

t∫
0

eu/τA(u)du. (14)

Thus, the drift velocity v(t) of the particle is also a fluctuating function of time; of course,
since 〈A(u)〉 = 0 for all u, the average drift velocity is given by the first term alone, namely

〈v(t)〉 = v(0)e−t/τ , (15)

which is the same as our earlier result (4). For the mean square velocity 〈v2(t)〉, we now
obtain from (14)

〈v2(t)〉 = v2(0)e−2t/τ
+ 2e−2t/τ

v(0) ·

t∫
0

eu/τ
〈A(u)〉du



+ e−2t/τ

t∫
0

t∫
0

e(u1+u2)/τ 〈A(u1) ·A(u2)〉du1du2. (16)

The second term on the right side of this equation is identically zero, because 〈A(u)〉 van-
ishes for all u. In the third term, we have the quantity 〈A(u1) ·A(u2)〉, which is a measure of
the “statistical correlation between the value of the fluctuating variable A at time u1 and its
value at time u2”; we call it the autocorrelation function of the variable A and denote it by
the symbol KA(u1,u2) or simply by K (u1,u2). Before proceeding with (16) any further, we
place on record some of the important properties of the function K (u1,u2).

(i) In a stationary ensemble (i.e., one in which the overall macroscopic behavior of the
systems does not change with time), the function K (u1,u2) depends only on the time
interval (u2−u1). Denoting this interval by the symbol s, we have

K (u1,u1+ s)≡ 〈A(u1) ·A(u1+ s)〉 = K (s), independently of u1. (17)

(ii) The quantity K (0), which is identically equal to the mean square value of the variable
A at time u1, must be positive definite. In a stationary ensemble, it would be a
constant, independent of u1:

K (0)= const.> 0. (18)

(iii) For any value of s, the magnitude of the function K (s) cannot exceed K (0).
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Proof : Since

〈|A(u1)±A(u2)|
2
〉 = 〈A2(u1)〉+ 〈A

2(u2)〉± 2(A(u1) ·A(u2)〉

= 2{K (0)±K (s)} ≥ 0,

the function K (s) cannot go outside the limits−K (0) and+K (0); consequently,

|K (s)| ≤ K (0) for all s. (19)

(iv) The function K (s) is symmetric about the value s= 0, that is,

K (−s)= K (s)= K (|s|). (20)

Proof :

K (s)≡ 〈A(u1) ·A(u1+ s)〉 = 〈A(u1− s) ·A(u1)〉
10

= 〈A(u1) ·A(u1− s)〉 ≡ K (−s).

(v) As s becomes large in comparison with the characteristic time τ ∗, the values A(u1)

and A(u1+ s) become uncorrelated, that is

K (s)≡ 〈A(u1) ·A(u1+ s)〉 −−−−−−−→
s�τ∗

〈A(u1)〉 · 〈A(u1+ s)〉 = 0. (21)

In other words, the “memory” of the molecular impacts received during a given interval
of time, say between u1 and u1+du1, is “completely lost” after a lapse of time large in
comparison with τ ∗. It follows that the magnitude of the function K (s) is significant only
so long as the variable s is of the same order of magnitude as τ ∗.

Figures 15.7 through 15.9 later in this chapter show the s-dependence of certain typical
correlation functions K (s); they fully conform to the properties listed here.

We now evaluate the double integral appearing in (16):

I =

t∫
0

t∫
0

e(u1+u2)/τK (u2−u1)du1du2. (22)

Changing over to the variables

S=
1
2
(u1+u2) and s= (u2−u1), (23)

the integrand becomes exp(2S/τ)K (s), the element (du1du2) gets replaced by the corre-
sponding element (dSds) while the limits of integration, in terms of the variables S and s,

10This is the only crucial step in the proof. It involves a “shift,” by an amount s, in both instants of the measurement
process; the equality results from the fact that the ensemble is supposed to be stationary.
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FIGURE 15.2 Limits of integration, of the double integral I, in terms of the variables S and s.

can be read from Figure 15.2; we find that, for 0≤ S ≤ t/2,s goes from−2S to+2S while, for
t/2≤ S ≤ t, it goes from−2(t− S) to+2(t− S). Accordingly,

I =

t/2∫
0

e2S/τdS

+2S∫
−2S

K (s)ds+

t∫
t/2

e2S/τdS

+2(t−S)∫
−2(t−S)

K (s)ds. (24)

In view of property (v) of the function K (s), see equation (21), the integrals over s draw
significant contribution only from a very narrow region, of the order of τ ∗, around the value
s= 0 (i.e., from the shaded region in Figure 15.2); contributions from regions with larger
values of |s| are negligible. Thus, if t� τ ∗, the limits of integration for s may be replaced by
−∞ and+∞, with the result

I ' C

t∫
0

e2S/τdS= C
τ

2
(e2t/τ

− 1), (25)

where

C =

∞∫
−∞

K (s)ds. (26)

Substituting (25) into (16), we obtain

〈v2(t)〉 = v2(0)e−2t/τ
+C

τ

2
(1− e−2t/τ ). (27)

Now, as t→∞, 〈v2(t)〉must tend to the equipartition value 3kT/M ; therefore,

C = 6kT/Mτ (28)



15.3 The Langevin theory of the Brownian motion 599

and hence

〈v2(t)〉 = v2(0)+
{

3kT
M
− v2(0)

}
(1− e−2t/τ ). (29)11

We note that if v2(0)were itself equal to the equipartition value 3kT/M , then 〈v2(t)〉would
always remain the same, which shows that statistical equilibrium, once attained, has a
natural tendency to persist.

Substituting (29) into the right side of (6), we obtain a more representative description
of the manner in which the quantity 〈r2

〉 varies with t; we thus have

d2

dt2
〈r2
〉+

1
τ

d
dt
〈r2
〉 = 2v2(0)e−2t/τ

+
6kT
M

(1− e−2t/τ ), (30)

with the solution

〈r2
〉 = v2(0)τ2(1− e−t/τ )2−

3kT
M

τ2(1− e−t/τ )(3− e−t/τ )+
6kTτ

M
t. (31)

Solution (31) satisfies the initial conditions that both 〈r2
〉 and its first time-derivative van-

ish at t = 0; moreover, if we put v2(0)= 3kT/M , it reduces to solution (7) obtained earlier.
Once again, we note the reversible nature of the motion for t� τ , with 〈r2

〉 ' v2(0)t2, and
its irreversible nature for t� τ , with 〈r2

〉 ' (6BkT)t.
Figures 15.3 and 15.4 show the variation, with time, of the ensemble averages 〈v2(t)〉

and 〈r2(t)〉 of a Brownian particle, as given by equations (29) and (31), respectively. All
important features of our results are manifestly evident in these plots.

Brownian motion continues to be a topic of contemporary research nearly 200 years
after Brown’s discovery and over 100 years after Einstein and Smoluchowski’s analysis and
early measurements by Perrin. The renewed interest is due to the growth in the techno-
logical importance of colloids across a wide range of fields and the development of digital
video and computer image analysis. An interesting example is the detailed observation and
analysis of rotational and two-dimensional translational Brownian motion of ellipsoidal
particles by Han et al. (2006) in a thin microscope slide. The case of rotational Brownian
motion was first analyzed by Einstein (1906b) and first measured by Perrin (1934, 1936).
Both rotational and translational modes diffuse according to Langevin dynamics but the
translational diffusion is coupled to the rotational diffusion since the translational diffu-
sion constant parallel to the longer axis is larger than the diffusion constant perpendicular

11One may check that

d
dt
〈v2(t)〉 =

2
τ

[
v2(∞)−〈v2(t)〉

]
=−

2
τ
1〈v2(t)〉,

where v2(∞)= 3kT/M and1〈v2(t)〉 is the “deviation of the quantity concerned from its equilibrium value.” In this form
of the equation, we have a typical example of a “relaxation phenomenon,” with relaxation time τ/2.
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FIGURE 15.3 The mean square velocity of a Brownian particle as a function of time. Curves 1, 2, and 3 correspond,
respectively, to the initial conditions v2(0)= 6kT/M ,3kT/M, and 0.
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FIGURE 15.4 The mean square displacement of a Brownian particle as a function of time. Curves 1, 2, and 3
correspond, respectively, to the initial conditions v2(0)= 6kT/M , 3kT/M, and 0.

to that axis. The rotational diffusion and both long-axis (a) and short-axis (b) body-frame
diffusions are all Gaussian:

pθ (1θ , t)=
1

√
4πDθ t

exp

(
−
(1θ)2

4Dθ t

)
, (32a)

pa(1xa, t)=
1

√
4πDat

exp

(
−
(1xa)

2

4Dat

)
, (32b)

pb(1xb, t)=
1√

4πDbt
exp

(
−
(1xb)

2

4Dbt

)
, (32c)
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with diffusion constants Dθ , Da, and Db. Experiments have observed the complex
two-dimensional spatial diffusion at short times (t . τθ = 1/(2Dθ )), as predicted by the
Langevin theory. The long-time (t� τθ ) spatial diffusion is isotropic with diffusion con-
stant D= (Da+Db)/2.

15.3.A Brownian motion of a harmonic oscillator

An analysis similar to the one for a diffusing Brownian particle can also be performed
for a particle in a harmonic oscillator potential that prevents the particle from diffus-
ing away from the origin and allows a more general analysis of the relationship between
the position and velocity response functions and the power spectra of the fluctua-
tions; see Kappler (1938) and Chandrasekhar (1943). The one-dimensional equation of
motion for a Brownian particle of mass M in a harmonic oscillator potential with spring
constant Mω2

0 is

d2x

dt2
+ γ

dx
dt
+ω2

0x =
F(t)
M

, (33)

where γ (= 6πηa/M) is the damping coefficient of a spherical particle in a fluid with
viscosity η. Just as in the case of diffusive Brownian motion, the force F(t) can be a time-
dependent external force designed to explore the response function or a time-dependent
random force due to collisions with molecules in the fluid to analyze the equilibrium fluc-
tuations. Assuming the system was in equilibrium in the distant past, the position at time
t is given by

x(t)=

t∫
−∞

χxx(t− t ′)F(t ′)dt ′, (34)

where

χxx(s)=
1

Mω1
e−

γ s
2 sin(ω1s) (35)

is the xx response function and ω1 =

√
ω2

0 −
γ 2

4 . 12 The velocity response is given by

v(t)=

t∫
−∞

χvx(t− t ′)F(t ′)dt ′, (36)

12This form of the response function assumes that the oscillator is underdamped. The notation χxx refers to the
notation used in Section 15.6.A in which the response of the position coordinate x depends on the applied field F that
couples to the Hamiltonian via a term−F(t)x(t).


