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I. INTRODUCTION

The generalized master equation (GME) is an entity one
meets with on the wayside in one's journey from the micro-
scopic to the macroscopic level of the dynamics of large
systems in statistical mechanics. The prominent character
in this journey is not the GME but is the Pauli master equa-
tion (PME) also known as the Master equation. The latter,
with its distinctive tendencies as are evident in the H-
theorem and its gemerally built-in irreversibility, pos-
sesses the ability to guide the weary [I] traveller safely (?)
to the realm of macroscopic phenomena. The importance of
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the GME is therefore not always appreciated in the normal
course of this jourmey. In fact, usually, the equation is
not even allowed to live long. Almost immediately after
one makes its acquaintance, a procedure known as the
Markoffian approximation [2] is thrust into the GME, de~
stroying its special characteristics and converting it in-
to the sought-after PME. There are, however, researchers,
who admire the GME for its own qualities (and not merely
for its ability to give birth to the PME), who have re-
cently studied it in its own right and have put to use its
potentialities. This article will trace some of this ac-
tivity concerning this interesting, powerful, but not al-
ways appreciated equation.

The connections of this subject to Elliott Montroll
are three: as everyone knows he is a confirmed traveller
[3] and has made numerous contributions to the clearing of
the path in the journey of statistical mechanics mentioned
above; he was one of the first to meet with the GME, having
used for the purpose his favorite conveyance, the determi-
nants [4]; and he belongs to the group of people who love
the GME for its own traits. It is a pleasure therefore to
dedicate this article to him on the occasion of his sixtieth

birthday.
IT1. HOW THE GME IS BORN

The central task of nonequilibrium statistical me-
chanics consists of bridging the gap between the micro-
scopic and the macroscopic equations of motion of large
bodies. Large-scale phenomena exhibit approach to equilib-
rium, irreversibility,and closure, although the underlying
dynamics at the microscopic level has recurrences, is to-
tally reversible,and involves an enormously larger number
of variables pertinent to the zillions of constituent par-
ticles. Much work has been done in an attempt to resolve
this seemingly paradoxical situation [§]. Beginning with
Boltzmann, many have made important contributions to this
activity and, although the problem is far from being com=
pletely solved, a certain degree of understanding has been
achieved. The work of van Hove [6,7] is one of those im-
portant contributions. With the Schroedinger equation as
his point of departure he showed how, under a certain limit-
ing process known as the A t limit", the PME may be ob-
taired for the evolution of the probabilities of occupation
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in a given basis provided the basis, and the system in
general, obey certain mathematical conditions. The A2t
1imit includes the '‘weak-coupling' assumption that the
perturbation, which is the cause of the evolution in the
given representation, is small, While examining the con-
gsequences of relaxing this weak-coupling assumption, van
Hove and collaborators found [7] that the result of their
procedure was not the PME but an equation that, although
formally similar to the PME, was non-local in time. It
was thought [8] at the time that the other assumptions,
conditions, and procedures of van Hove were necessary to
obtain the new equation. Swenson however showed [J] that
they were not and that the non-local equation (not the
PME!) was an exact consequence of the Schroedinger equation
under a certain class of initial conditions. Several others
among them Prigogine and Résibois [70], Nakajima [1I],
Zwanzig [12,13], and Montroll [4], obtained formally simi-
lar equations. A significant service to workers in sta-
tistical mechanics was rendered by Zwanzig [13] who gave a
clear analysis of the relations among the various deriva-
tions, and the equation

t

dpP_(t)
_%f.;.. = J de' ¥ [ g (E- DR ()W (£-£ )P (£7)]
) N (1)

for the evolution of the probability Py of occupation of
the state M, was thenceforth called the generalized master
equation. The term "generalized" is used to distinguish it
from the Master equation (or the PME)

dp, (t) - .
M -
ac g [Frn®x () = Fipnfp(0)] (2

which is local (in time) and exhibits approach to equilib-
rium. Equation (1) is evidently non-local and the nature
of the "memory functions" W(t) determines whether or not
(and how) the system described by it equilibrates. The re-
lations between equations (1) and (2) are two. The first
1s that the former 1s converted into the latter by the
"Markoffian approximation"

wmq(t) = FMNG (t) (3)
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alluded to in Section I. The second is that there exists
a class of W's for which the solutions of equation (1) tend
to those of equation (2) for sufficiently long times [14].

We have stated above that the GME [equation (1)] can
be obtained in several different ways from the microscopic
equations of motion., Since an analysis of the relations
of these various ways to one another exists in the litera-
ture [13], we shall focus on only one of them, viz. that
due to Zwanzig [12]. The Schroedinger equation, when pre-
pared for the activities of statistical mechanics, dons
the form

é
i -5% = [H,p] = Lp (4)
and assumes the name Licuville - von Neumann. Here

p is the demsity matrix, L 1s the Liouville operator, H is
the Hamiltonian and K is equal to 1. The projection tech-
nique [12] 1s especially designed to take one quickly from
the microscopic starting point [equation (4)] to the GME
[equation (1)] with the minimum amount of effort. The
probability Py in the GME is identified with the diagonal
element <M p|M> of the density matrix p in the representa-
tion of states ]M>,|N>, etc. This representation is that
of the eigenstates of HO’ a part of the total Hamiltonian
H:

H=Hy +2V . (5)
Here AV is the perturbation causing the evolution in the
space of the H, eigenstates, A being a c-number denoting
the strength og the interaction. The projection technique
proceeds in three steps: (i) the definition of the projec-
tion operator P which, when allowed to operate on any oper-
ator 0, extinguishes all its elements which are off-diagonal
in the representation of the H, eigenstates:

<M|PO|N> = <M|0|M>esM (6)

N
®
(i11) the successive application of P and (1-P) to equation
(4) resulting in two simultaneous equations for Pp and
(1-P)p, and (iii) the trivial elimination of (1-P)p by
Laplace-transforms or otherwise [I5]. The result of these
three steps is a quasi-closed equation for p'=Pp, the di-
agonal part of the density matrix:
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t
1
%%—'ﬂ'j de' K(e=t")p' (") + I(t) (7)
0
where T(t) and the "super-operator” kernel K(t) are given
by ‘

e 1tA-PL 3 _pyo (o) (8)

1-nL . (9)

I(t) = 1iPL

K(t) = _PLe—it(l—P)L

The first term in equation (7) is dependent only on p'
although it involves it at all times t' in the past. It
is thus "closed" in p'. The second term of equation (7)
does depend on the off-diagonal part of p but, as equation
(8) shows, the dependence is only on the initial value (at
t=0) of this off-diagonal part and is thus formally simple.
Furthermore K(t) and I(t) are obtainable in principle as
system entities and are not dependent om p'(t). Finally,
whenever p is initially diagonal, I(t) becomes identically
zero for all times, making equation (7) truly closed in p'.
It is for these reasons that equation (7) has been termed
quasi-closed in p'.

If the initial diagonality condition on p holds, the
M-th element of equation (7) Zs the generalized master
equation [equation (1)]. We have thus seen how the GME is
obtained from the microscopic dynamics. It is important
to realize that the initial diagonality assumption is a
condition and not necessarily an approximation, and that
under it the GME is an exact consequence of the microscopic
dynamics. We emphasize this point because even now, more
than fifteen years since these analyses were first pub-
lished, it is often not realized that a closed (albeit non-
local) equation for the probabilities can be an exact con-
sequence of quantum mechanics.

ITI. HOW THE GME GROWS

There are two reasons why one might attempt to modify
the derivation of the GME given in the previous sectionmn.
The first is conceptual and the second practical. Both
reasons stem from one's dissatisfaction with the identifi-
cation of the probability Py with <M|p|M>, the diagonal




446 : - V.M. KENKRE

element of the density matrix. The dissatisfaction has
its source in the fact that a macroscopic description is
perforce much coarser than a microscopic one, and its
states M must therefore be correspondingly coarser ver-
sions, 1.e. groups,of the microscopic states ]M>. As em—
phasized by Uhlenbeck {5}, van Kampen [16], and others,
this coarsening of the description is an important feature
of the passage from the microscopic to the macroscopic
level of dynamics. It is not represented at all in the
previous derivation. One therefore wishes to derive an
evolution equation which directly governs the time depen-
dence not of the diagonal element of p, but of a sum of

such diagonal elements. Specifically, if one now represents

the eigenstates of H by I£>,|u>, etc., and reserves the
labels M, N, etc. for groups of those eigenstates, one can
make the identification :

PM = z <g|p|E> (10)
EeM

which incorporates the feature of the passage from micro-
scoplcs to macroscopics mentioned above. In addition to
the conceptual need for this coarse-graining there is also
a practical one. In tramsport calculations one is often
interested in an extremely small part of the system. Thus
one may wish to get rid not only of a "heat-bath” but even
of the phonons in an electron-phonon system and to concen-
trate on the evolution of (for instance) the fwo electron
states in a dimer. These considerations require a general-
ization of the projection operator of the previous section.
Such a generalization was first made by Emch [I17] for the
conceptual reasons explained above and independently, but
much later, by the author [18] for practical transport cal-
culations. Our version of this Emch generalization of the
Zwanzig projection operator may be written as

=1
<g|P0[u>=[Z <g|0|g>}[z 1] 084, 1)
EeM EeM

and should be compared to equation (6). The first factor
on the right~hand-side of equation (11) represents the
coarse-graining, the second makes the sum take the form of
an average, the third is a weighting factor in the choice
of which there is a certain latitude as explained below,
and the last is the diagonalizing Kronmecker delta. To

Wl
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ensure that P2=P, Qg must satisfy

I Q= ] 1=g (12)
EeM EeM

where gy denotes the number of states in the grain M. This
condition for idempotency of P can be derived directly from
equation (11) by calculating <£|P201u> from it. Also, in
practical calculations, particularly useful expressions
result when Qr is independent of the grain (not independent
of £). However this can be arranged quite naturally in
cases of interest. Thus, consider as in [I18], a system of
spins interacting with a bath of phonons., The system state
is an outer product of the spin state and the phonon state:
[E>=lM,m>=]M>|m>, the grains M corresponding to the spin
states and the "space within the grains", represented by m,
to the phonon states. In exciton transport [79] the exci-
ton states are represented by [M> and the phonon states by
|m>. It is quite natural (and convenient) in these cases
to write Qp=Q, and thus ensure that it is independent of
the grain ﬁ. In our earlier calculations [18,19] the
choices Q. =1 and Qmé[exp(—BEm)][gexp(-BEm)]"l[%l] have been
used [20]. The former is appropriate to a microcanonical
ensemble and the latter to a canonical one.

The above comments concerning Q. might lead one to be-
lieve that there is considerable flexibility in the choice
of the Q's. This 1is true only if one is willing to violate
(1-P)p(0)=0 and either treat that initial condition as an
approximation or undertake an analysis of the term I(t) of
equation (8). Otherwise p(0) dictates the form of Q through
the initial condition:

op=[<lo (@821 ] <tlo(o)]e>17 [ 1] (13)
EeM EeM

We thus see that the modified projection operator performs
two operations in addition to diagonalization: it averages
the diagonal elements in groups thus removing any variation
within the grain; it then imposes 1ts own variation Qg.

The modification of P, as advocated in equation (11),
does not change the form of the resulting equations (7),
(8), (9) and finally the GME (1). However the meaning of
the quantities I(t), K(t) and W(t) is certainly changed as
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the P's in them coarse-grain in addition to diagonalizing.
The initial "diagonality" of p, which allows the transition
from equation (7) to (1), also changes its meaning accord-
ingly. One must now not only have no off-diagonal ele-
ments in the initial p, but must demand that, within each
coarse grain or group, the variation of the diagonal ele-
ments with £ is given precisely by QE' Equation (13) will
clarify this last statement.

The effect of this modification on transport calcula-
tions will be described in the next sectlon. Its effects
on the irreversibility problem will be sketched in the
appendix to this article. Here we shall show the result-
ing approximate prescriptions for evaluating the memor ies

wMN of equation (1).

An exact evaluation of K(t) or W, (t) is essentially
tantamount to a full solution of the = dynamics of the
problem. It should be evident therefore that approximation
techniques are necessary for all but the most unrealisti-
cally simplified situations. To this end Zwanzig intro-
duced the weak-coupling approximation [12] whereby he re-
placed (Hy+AV) by merely Hy in the term [exp{-it(1-P)L}]
in equation (9) or (7) and showed that a simple formula
resulted for wMN:

lyy (E) = 2| | 37| 8> | Pcos (B, - Coaw

Note that substituting equation (14) in equation (3) and
integrating gives
2
Fyg = 2| <M|aV|N> |8 (BB -as
which establishes the connection between the approximate

form of the GME and the PME with the Golden Rule prescrip-
tion of equation (15) for its rates.

In conjunction with our modified projectioh operator
the weak-coupling approximation can be shown to yield

2
wm(t)ﬂEEM ugN [Qu/gN]|<E|V]u>| cos(E,~E )t (16)

2
W (t)=2 [Q./g.1]<€|V|u>| “cos(E-E )t . (17)
NM E,‘Z::M HZN g/ By Y
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Under the Markoffian approximation one puts W(t) ®
0o

6(t)[f dt'W(t')] which reduces these equations to Golden
)

Rule rate expressions. These, unlike equation (15), have
the familiar average [21] over the initial state and summa-
tion over the final state, leading to the density-of-states
factor.

The calculation behind equations (16) and (17) being
quite straightforward we have never felt the need to pub-
l1ish it. However there has been some confusion about the
emergence of the various factors in the final expressions
and erroneous assumptions appear sometimes to have been
made concerning, for instance, the inclusion of factors
like Qr within the summation in equation (11). We shall
therefore briefly outline the calculation. In a manner
completely analogous to Zwanzig's [12] one arrives at

t -i(t-t")H +i(t-t")H
Q%E?l - _J dt'PLVe 0(Lva)e

o

0 s

wherein the argument of Pp is t in the left-hand-side and

t' in the right-hand-side, and Ly denotes commutation with
AV. Cancelling a factor (Q /gM) from both sides of the Eth
element of equation (18) ané introducing I |u><ul as the

identity [22],0one obtains ally
92, t
—= = f ae' ¥} s, (t-t')[<u|Pp|u>—<E|Pp|E>]
ot EeM all 3
o H (19)

where S u(t)=2]<E]V]u>|2cos(E€—E )t, and t' is the argument
of p. Direct application of equagions (11) and (10) shows
the two-term factor in the summation in equation (19) to be
[(Qu/gN)PN(t')—(legM)PM(t')]. Splitting the summation
over all p's into one within the grain N (to be absorbed

in the memory expressions) and another over the grains N,
equations (1), (16), and (17) immediately result.

IV. HOW THE GME IS PUT TO WORK

The special attraction of the GME is that, being less
removed from, and consequently more loyal to, the Liouville-




450 V.M. KENKRE

von Neumann equation, it has a wider range of validity than
the PME. 1In particular it contains short-time information
not possessed by the latter. Microscopic oscillations,
coherences, and other subtleties, to which the PME is to~-
tally blind, can therefore be sought and explored with its
help. To appreciate the special powers of the GME which
arise from its "non-Markoffian" (i.e. mon-local) mature,
observe that completely coherent transport as described by
the classical wave equation and completely incoherent trans-
port as described by the diffusion equation can be com-
bined into the single equation

t

. 2 v
L) J gt p(e-ery TR (20)
ax
[o]

which is nothing other than the GME for a continuum with
short range transitions. The choice D(t)=D&(t) converts
equation (20) into the diffusion equation while 1f D(t)=c?
one recovers the wave equation. Here P(x,t) is the prob-
ability, D the diffusion constant and ¢ the speed of the
wave. Complete absence of memory of past times thus corres—
ponds to incoherent transport and perfect memory to coher-
ent transport. Both extremes may be obtained from the GME
in this way. Furthermore an intermediate memory, which is
neither perfect nor totally absent, yields solutions of the
GME which are coherent at short times but diffusive at laxrge
times. As an example note that the choice D(t)=c2exp(—tc2/D)
converts equation (20) into ‘

3P (x,t) [_cf] BP(x,t) _ 2 2%p (x,t) 21)
2 D at 2
at ox :

which is a form of the telegrapher's equation and which, as
was well known to Heaviside, Kelvin and others [23], does
produce waves which eventually damp out into diffusive
transport.

This potentiality of the GME was directly used by
Knex and the author [24] in the context of exciton trans-
port. Transfer of electronic excitation in atomic or mo-
lecular aggregates 1s of importance to diverse fields such
as sensitized luminescence and photosynthesis. Calcula-
tions of Perrin [25] based on wave-like transfer as would
arise from the Schroedinger equation involving a small
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number of states (for instance two) were unsuccessful in
explaining experiments on fluorescence depolarization.
Forster developed a successful theory based on incoherent
transfer as described by the PME. The theory was later
extended and elaborated upon by Dexter. Being based on

the PME, this theory [26] is obviously unable to describe
wave-like oscillations of the probability. Although such
oscillations were never observed directly in luminescence
experiments, coherent transport was invoked by some authors
to explain some departures from the predictions of the
Férster-Dexter theory [26]. The departures were in the
context of the dependence of transfer rates on intersite
distance. These rates, when calculated by the Fermi Golden
rule, are proportional to the square of the matrix element
of the interaction. Coherent rates were sometimes defined
as being proportional to the matrix element itself. The
latter being inversely proportional to the cube of the in-
tersite distance R in the case of dipole-dipole interac-
tion, coherent transport (sometimes called fast transport)
was characterized by R-3 rates and incoherent motion by R-6
rates. TForster [27] stated the problem clearly and ex-
pressed the need for unifying the two descriptions. It was
sometimes claimed that no relation could exist between
them. However a connection can be established and a for-
malism capable of treating the intermediate case and of
providing a continuous transition from the -3 exponent to
the -6 one can be given as follows.

Considering for the sake of simplicity the GME for a
linear chain with Wyy's that factor into space parts Py
and a time part ¢(t)

e (r) F | .
- [ deacemen) ] gy Ty (D] 22
0

the author has shown [28)] that homogeneity in space, char-
acterized by Fyy=Fy.y, leads to the following equation for
the mean square displacement @I—f(t)= n MZPM(t) :

M

7 _
L‘M—déﬂ =<M2>I dt'¢(t')+2<M>f de'¢ (-t )M(L") (23)
o (o}

Here <M2>=§ MZFM, <M> and M have obvious meanings and the
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infinite extent of the chain has been used. For situations
possessing no bias, the last term in equation (23) is zero
and one has a simple relation between the mean square dis-
placement and the memory ¢(t). (Strangely enough, it has
the appearance of Newton's second law of motion.) On the
basis of this relation it is possible to define [24] a
unified rate w.for coherent and incoherent transport by
identifying it with the reciprocal of the time required
for M2 to build up from the value O (taking initial local-
ization on site 0) to the value 1. This signifies that
in an average sense the excitation has moved a distance of
one site. One then obtains

1/w t
1

dt J dt'¢(t') = 5 . (24)
<M >

o] o

Four comments will now be made about equation (24).
The extreme choice ¢$(t)=8(t), which would make the GME a
PME and would represent totally incoherent transport, re-
sults in w= <M2>, The extreme choice ¢(t)=const. would
represent totally coherent transport and results in wl=
(const./2)<M?>. Expanding any memory at short times as
¢(t)=¢(0)+ ...., and retaining only the first term, gives,
for short times w2=[¢(0)/2]1<M Any memory that eventu-
ally decays to zero, results at Zong times in w =

(const.)”1<M2> where the constant equals fmdt¢(t).
o

These comments immediately show how a natural unifi-
cation of the R™3 and R~® rates can be made. Note here
that <M?> is proportional to R™® for dipole-dipole inter-
actions and observe how it is proportional to the rate w
in one extreme and to w? in the other. For the case of
nearest neighbour interactions and an exponential memory:
$(t)=cexp(-at), Knox and the author [24] gave explicit ex-
pressions for w and analyzed with their help, some data on
bacteriochlorophyll-protein complexes.

The utilization [18] of our explicit coarsegrained
formulae for the memory functions [equations (16) and (17)]
in the context .of exciton transport results in an interest-
ing connection between tranmsport parameters and spectral
features of the system under study. This connection pro-
vides a useful prescription for extracting the memory
functions from experimentally measurable quantities.
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Briefly, WMN(t) is found to be the inverse Fourier trans-
form of the real part of the product of the Fourier trans-
forms of the lineshape functions for the optical absorption
spectrum for the molecule at site M and for the emigsion
spectrum for the one at site N. The detailed derivation

of this result is in refs. [19]. Through this practical
prescription we have compiled [29] the memory functions
for various real systems and the results are useful in
assessing the extent of coherence in those systems.

The coarse-grained formulae have also been applied by
Rahman and the author [19] for model calculations in ex-
citon transport and by the author [18] for describing the
approach to equilibrium of certain ferromagnet models.
Similar calculations have been given by 0. Entin-Wohlman
and Bergman [30] in the context of polaron motion. We have
also used the formulae for analyzing oscillatory behavior
observed in the Kac-Dresden ring models [31].

Among other recent uses of approaches closely related
to the GME, we mention the work on charge transfer in
amorphous systems [32] by Scher and Lax, and by Scher and
Montroll, and the work on rotational relaxation in liquids
[33] by Lindenberg and Cukier. The general subject of
memory-function formalisms is vast and we do not review
it here.

Y. HOW THE GME RELATES TO OTHERS

The GME bears interesting relations to several other
transport entities. We have seen how the PME emexges from
it under the effect of the Markeffian approximation. Here
we shall briefly explain its connection to continuous time
random walks (CTRW) and to stochastic Liouville equations
(SLE).

The regular discrete-time random walk described by
Py (1) = I{q QP (T (25)

relating the probabilities of occupation at time rt to
those one discrete time interval 1 earlier through the
transition probabilities QMN’ was generalized by Montroll
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and Weiss [34] to continuous time situations. Their formu-
lation is equivalent to

t t
PM(t)-PM(O) [1—[ dt'w(t')]fj' dt'g thp(t-t')PN(t')
0

o (26)

where the "pausing-time distribution function" y(t) de-
scribes how long the walker may pause at a site before
taking the next step. Observe how the first term clearly
represents the probability that the walker has lingered at
M. Montroll, Shlesinger,and the author [I14] showed that
this Rip-van-Winkle behaviour of the CTBRW is related to
the memory of the simplified GME (22). Here we shall show
the equivalence,first given by Knox and the author [35], eof
the general GME (1) and a natural extension of equation
(26).

The Laplace transform of the GME (1) is
eP\ By (0) = 1}:'1 By ~ g wN‘MPM (27)

where £ is the Laplace~variable and tildes denote the
transforms. A rearrangement of equation (27) leads to

- -1 s Lo S
BBy, (0) e+1§ wm] +[e g wm;l g‘"mPN (28)
which is inverted into
t

t
P (t)=P (0)[—[ dt'y (t')]+j dt’ (t=t")P _(t*)
M M ) M - g QMN N (29)

which is a natural gemeralization of equation (26) for
cases wherein the pausing-time distribution function de-
pends on the sites. The connection between the GME and
the CTRW quantities is given by

. 5 . -1
Oy = Uhgy e+ng}J | (30)

. =-1
v -[:zw][“z w] (31)
Mooy M N o o
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Various particular cases of these equations may be obtained
[36]. For instance, for wMN(t)=FMN¢(t) one recovers

de(t) t
T+[I§ FNMJ f dt'¢(t*t')¢M(t')=[t§ Fm‘;Jfb(t) +
o ‘

+,(06(8) (32)

. Also, solving_ for 7] from equations (30) and (31) above and
identifying @ with K of the first ref. [36] ylelds their
equation (77), whereas writing M as (k,%), where % is an
internal state and k a reciprocal space vector, gives equa-
tions (40) and (41) of the second ref. [36].

Transport equations for the density matrix which have
a part having the Liouville-von~Neumann form and a part
having the PME form have been termed "stochastic Liouville
equations” by Kubo {37]. Such equations have been used by
Haken and collaborators [38] and by Silbey and collabora-
tors [39] in exciton tramsport and their relation to the
GME was established by the author [40]. For a simple dimer
consisting of two states 1 and 2, the equations

dpy, (€ :

—g— = —iJ(QZl—plz)"' I dt'A(t"t')[pzz(t')'_'pll(t')]
) (33)

dplz(t) _ £ ' . . ,

— - 51J(p22—p11)+ J dt'B(t-t') [p,, (t )—plz(t )]

o v (34)

constitute a generalized SLE in that the last terms are
non-local in time. Note the character of the two terms on
the right-hand-side. The relation of these equations to
the GME '

t
fﬁllﬁiz de'w(e-t') [ ’ ' 5
dt = = pzz(t )—pll(t )] (3 )

(o)

is immediately obtained through Laplace transforms as
= A+ 207 + 2B . (36)

This two-term form is very interesting and shows that
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ordinary SLE's with A(t)= As(t) and B(t)=B&(t), are equiva-
lent to a GME with a memory that is the sum of a §-function
and an exponential. TFor exciton transport the terms A and
B are intimately related to different parts of optical
spectra and we have studied them particularly in the con-
text of zero-phonon lines in the last of refs. [19]. These
issues will not be discussed here.

VI. WHITHER GME?

We have discussed above some aspects of this object
which we find to be useful, powerful, exciting, and need-
lessly ignored. We wish not to make any prophetic remarks
concerning its usefulness in the future but only to state
that many interesting avenues of research regarding it still
remain open. In the purely formal domain one is to derive
useful expressions for I1(t), another to study the effects
of I(t) on the GME in the sense of a driving term, a third
to explore consequences of structure in H, eigenstates on
the coarse-grained formulae for W's.

APPENDIX
POOR MAN'S VERSION OF THE EXPLANATION OF
THE ORIGIN OF IRREVERSIBILITY

Despite herculean efforts since the time of Boltzmann
to clarify the origin of irreversibility and approach to
equilibrium within a system of mechanics grounded in re-
versible equations of motion, a universally acceptable pic-
ture has not emerged., Much physical intuition has been
accumulated on the basis of general arguments as well as
of exact solutions of a highly limited number of simplified
models. However many important issues remain open [41].
The actual situation among the workers in the field appears
to be that each one develops his/her/its own private pic-
ture of this fascinating problem. Here, within the rela-
tive safety of an appendix, I shall venture to present,
very briefly, such a private picture. The reader is warned
that it is definitely incomplete, touches in a blurred way
or not at all on some important issues, but he is assured
that it is quite unpretentious, several of its elements
being admittedly drawn from the ideas of others [5,6,12,16,
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17,42]. I ineclude it here because 1 find it physically
appealing and privately satisfying, in spite of its rela-
tively low level of sophistication, and because it is
based on the coarse-grained equations (16) and (17) given
in the text.

After van Hove and others,let us remind ourselves that
approach to equilibrium should not be umniversally obtained
but only when we look (i) at a coarse level of description,
(i1i) at times that are not too long so that Poincaré re-
currences can be forgotten or, alternatively, at systems
that are large enough to possess recurrences occurring at
times much larger than observation times, (iii) at suffi-
ciently long times so that transient coherences can be
avoided, and (iv) only at certain systems since not every
system is dissipative. In van Hove's treatment [6],

(i) corresponds to his choice of "smooth operators" allow-
ing him to sum over many states, (ii) is taken care of by
the thermodynamic limit, (iii) is ensured by a part (t—+=)
of the A%t 1imit, and (iv) corresponds to the diagonal
singularity conditions. We shall now see how an analysis
from equation (16) or (17) can take into account (1) through
(iv) in a simple way. We shall not invoke (iii) explicitly
in that our GME can observe (and is proud to be able to)
the transient coherences, which, however, we can avoid by
looking at the asymptotic behaviour of the solutioms. Also
(1) is automatically ensured by the coarsegraining that is
built into the projection operator defined to obtain equa~-
tion (16) or (17).

Observe now that equation (16) or (17) has the form of
a Fourter transform. Concentrating on the essentials and
ignoring Qu and the p-summation in equation (16), we write

Wir) = f dw coswt Y(w) (A.1)

the w-summation being the g~summation in equation (16) and
Y(w) being essentially the product of the matrix element of
V, here to be symbolized by I<]V[>]2, and the density of
states in the grain of the £'s, to be symbolized by f(w):

Y(w) = const.,<lVl>]2f(m) . (A.2)

From equation (A.l) we observe that a simple oscillatory
W(t) arises from a singular Y(w), and a decaying W(t) from
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a non-gingular Y(w). The problem before us may be con-
sidered to be that of understanding how the GME can become
a PME, or, more precisely, how the passage from microscopics
to macroscopics can change the character of the W's from
oscillatory [see equation (14)] to that of a 6-function,
the ultimate in decay [see equation (3)]. Equation (A.1)
transfers this problem to that of understanding how Y(w)
changes its character from singular to non-singular. How-
ever this is displayed clearly in equation (A.2). A small
system with well~spaced discrete states has a density of
states f£(w) that is a clearly recognizable sum of $-func-
tions (in energy) and which is thus quite singular. The
thermodynamic limit pushes those states closer together
forming a continuum and, provided ]<']V|>[2 has no singu-
larities, Y(w) becomes non-singular, resulting in approach
to equilibrium. Non-dissipative systems will be represented
either by a |<|V|>|? that continues to have a singularity
even in the limit or by states that, in the 1imit, bunch
into one or more localized gorups (at points in energy
space) leading to a singular f(w). The results of such
properties could be persistent correlations or oscillations
that survive even in the thermodynamic limit. Examples of
such behaviour have been met with in the last of refs. [719].

I should point out that the details in the above
argument are not particularly new. What is new (to the
best of my knowledge) is the idea of looking at W(t) as a
Fourier transform and of connecting thereby the dissipative
properties of W(t) to system properties |<]v|>]% and £(w).
An advantage of this viewpoint is that points (1)~(iv) are
incorporated in a simple way; a serious disadvantage is the
cavalier disregard of such issues as the (diagonal) singu-
lar properties of V and the effects (for instance secular
terms and divergences) of truncating the exact expression
of W().
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