
PHYC - 505: Statistical Mechanics

Homework Assignment 1

Solutions

1. A magnetic field B is applied to a system of a large number N of noninteracting spins each of magnetic
moment µ at temperature T . Calculate (display analytic expressions) and plot (not merely sketch, do
this with some graphing package)

(a) the magnetization as a function of T at two given values of B,

(b) the magnetization as a function of B at two given values of T ,

(c) the heat capacity of the system as a function of temperature T for a given value of B.

Do each of these in a 1-dimensional, 2-dimensional, and 3-dimensional systems, carefully watching
differences if any. The first of these is the system treated in class. For all three you have to evaluate
appropriate integrals if necessary and express in terms of special functions such as hyperbolic, Bessel,
etc.

The basis of all your calculations should be the Boltzmann weight exp(−E/kT ) and the expression for
the energy for a spin as E = −µB cos θ, where θ is the angle between the directions of spin moment
and the magnetic field.

Mathematical Aside: Generally speaking, for a system described above in any dimension, the
associated energy, E, as given in lecture, is

E = −~µ · ~B = −µB cos θ

where θ is the angle between the direction of the spin moment and the applied magnetic field, B. The
partition function for one of the spins is defined as

Z1 =

∫
g(E)e−βEdE =

∫
g̃(θ)eβµB cos θdΩ

where g̃(θ) can be thought of as the weight of each state allowable in the system between a torus of
radius θ and θ + dθ for each of the N spins. In 1-D, 2-D, and 3-D, this would be defined as

g̃1-D(θ)dΩ = (δ(θ) + δ(θ − π)) dθ, g̃2-D(θ)dΩ = dθ,

and

g̃3-D(θ)dΩ = sin θdθ

∫ 2π

0

dφ = 2π sin θdθ,

respectively. The partition function of the system of N particles is then given as

Z = ZN1

(before the Gibbs remedy is applied to the system, where we divide by N !; here this correction is not
important since the properties that are being calculated are not affected by that factor in the end and
therefore the N ! factor will not be used in the rest of these solutions).
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The average energy of the system can then be found by taking the negative derivative with respect to
β of the partition function as follows

〈E〉 = − ∂

∂β
lnZ = − N

Z1

∂Z1

∂β

The average magnetization of the system can be found in as similar manner as

〈M〉 =
∂

∂βB
lnZ =

N

Z1

∂Z1

∂β

The heat capacity of the system can be found by taking the temperature derivative of the average
energy

C =
d〈E〉
dT

=
∂〈E〉
∂β

∂β

∂T
= − 1

kBT 2

∂〈E〉
∂β

1-D: (Note: This case of the problem will be solved in the manner done in class.) For a 1 dimensional
system of N noninteracting particles in equilibrium at temperature, T , in a magnetic field, B,
with magnetic moment, µ there are two possible energy spin states, E↑ and E↓. The probabilities
of a spin being in either state are

P(E↑) =
e−βE↑

e−βE↓ + e−βE↑
and P(E↓) =

e−βE↓

e−βE↓ + e−βE↑

where
E↑ = −µB and E↓ = µB,

are the two energy states, and β = 1
kBT

.

The average magnetization for the total magnetization of the system, as given in class, is

〈M〉 = N↑µ+N↓(−µ) = µ (N↑ −N↓)

where

N↑ = NP(E↑) =
Ne−βE↑

e−βE↓ + e−βE↑
and N↓ = NP(E↓) =

Ne−βE↓

e−βE↓ + e−βE↑
,

The average magnetization is then rewritten as

〈M〉 = 〈Nµ〉 = µ (N↑ −N↓)

= Nµ

(
e−βE↑

e−βE↓ + e−βE↑
− e−βE↓

e−βE↓ + e−βE↑

)
= Nµ

eβµB − e−βµB

e−βµB + eβµB

= Nµ tanh (βµB)

= Nµ tanh

(
µB

kBT

)
For very low temperatures, that is, for

µB

kBT
>> 1

the average magnetization becomes constant with respect to both temperature, T , and magnetic
field, B, as the hyperbolic tangent approaches unity,

lim
µB
kBT
→∞
〈M〉 = lim

µB
kBT
→∞

Nµ tanh

(
µB

kBT

)
→ Nµ
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Figure 1. Here the fixed values of the magnetic field, B, and the temperature, T , are taken to be in arbitrary
units.

whereas for very high temperatures, that is, for

µB

kBT
<< 1

the hyperbolic tangent can be rewritten in terms of its Taylor series expansion, where

tanh(x) = x− x3

3
+ · · ·

and the average magnetization becomes

lim
µB
kBT
→0
〈M〉 = lim

µB
kBT
→0

Nµ tanh

(
µB

kBT

)
→ N

µ2B

kBT

The heat capacity, C, is defined as the derivative of the average energy of all the spin states, 〈E〉,
with respect to the temperature, T , as

C =
d〈E〉
dT

Now the average energy of this particular system in 1 dimension is defined (as in the notes)

〈E〉 = N↑E↑ +N↓E↓

= N

(
(−µB)

e−βE↑

e−βE↓ + e−βE↑
+ µB

e−βE↓

e−βE↓ + e−βE↑

)
= −NµB eβµB − e−βµB

e−βµB + eβµB

= −NµB tanh (βµB)

= −NµB tanh

(
µB

kBT

)
Taking the derivative with respect to the temperature of the above equation we have

C =
d〈E〉
dT

= −NµB d

dT

(
tanh

(
µB

kBT

))
= N

µ2B2

kBT 2
sech2

(
µB

kBT

)
= NkB

(
µB

kBT

)2

sech2

(
µB

kBT

)
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Figure 2. Here the fixed values of the magnetic field, B, are taken to be in arbitrary units.

For very low temperatures, that is, for

µB

kBT
>> 1

the heat capacity approaches zero

lim
µB
kBT
→∞

C = lim
µB
kBT
→∞

NkB

(
µB

kBT

)2

sech2

(
µB

kBT

)
→ 0

whereas for very high temperatures, that is, for

µB

kBT
<< 1

the hyperbolic secant can be rewritten in terms of its Taylor series expansion, where

sech2(x) =

(
1− x2

2
+ · · ·

)2

= 1− x2 + · · ·

and the heat capacity becomes

lim
µB
kBT
→0

C = lim
µB
kBT
→0

NkB

(
µB

kBT

)2

sech2

(
µB

kBT

)
→ 0

2-D: Following from the mathematical aside above (or even from the lecture notes), we have that the
partition function for this case is given as

Z = ZN1

=

(∫ 2π

0

eβµB cos θdθ

)N
This integral has the form of a modified Bessel function of the first kind of integral order n = 0

In(βµB) =
1

π

∫ π

0

eβµB cos(u) cos (nu) du
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Letting u → 2u, and using the u-substitution that θ = 2u, and dθ = 2du, then we have the final
form

In(βµB) =
1

2π

∫ 2π

0

eβµB cos(θ) cos (nθ) dθ

yielding that the above integral for the partition function of the system is

Z = (2πI0(βµB))
N

The average energy is then

〈E〉 = − N

2πI0(βµB)

∂

∂β
(2πI0(βµB))

= −NµBI1(βµB)

I0(βµB)

The average magnetization is found as

〈M〉 =
N

2πI0(βµB)

∂

∂βB
(2πI0(βµB))

= Nµ
I1(βµB)

I0(βµB)

and the heat capacity is calculated as follows

C =
d〈E〉
dT

= − 1

kBT 2

∂〈E〉
∂β

= − 1

kBT 2

∂

∂β

(
−NµBI1(βµB)

I0(βµB)

)
=
NµB

kBT 2

∂

∂β

(
I1(βµB)

I0(βµB)

)
=
NµB

kBT 2

[
−µB

(
I1(βµB)

I0(βµB)

)2

+
1

I0(βµB)

∂I1(βµB)

∂β

]

=
NµB

kBT 2

[
−µB

(
I1(βµB)

I0(βµB)

)2

+
1

I0(βµB)

(
µB

2
(I0(βµB) + I2(βµB))

)]

= NkB

(
µB

kBT

)2
[
−
(
I1(βµB)

I0(βµB)

)2

+
1

2I0(βµB)
(I0(βµB) + I2(βµB))

]

= NkB

(
µB

kBT

)2
[

1

2

(
1 +

I2(βµB)

I0(βµB)

)
−
(
I1(βµB)

I0(βµB)

)2
]

For very low temperatures, that is, for
βµB >> 1

The Bessel functions approach each other, that is,

I0(βµB) ∼ I1(βµB) ∼ I2(βµB) · · ·

as they grow exponentially toward infinity almost at the same rate, and therefore the average
magnetization and heat capacity for βµB →∞ become

lim
βµB→∞

〈M〉 = lim
βµB→∞

Nµ
I1(βµB)

I0(βµB)
→ Nµ
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Figure 3. Here the fixed values of the magnetic field, B, and the temperature, T , are taken to be in arbitrary
units.

Figure 4. Here the fixed values of the magnetic field, B, are taken to be in arbitrary units.

and

lim
βµB→∞

C = NkB lim
βµB→∞

(βµB)
2

[
1

2

(
1 +

I2(βµB)

I0(βµB)

)
−
(
I1(βµB)

I0(βµB)

)2
]

→ NkB
2

lim
x→∞

x2
[
I0(x)2 + I2(x)I0(x)− 2I1(x)2

]
I0(x)2

L′H
=

NkB
2

lim
x→∞

(
2x
[
I0(x)2 + I2(x)I0(x)− 2I1(x)2

]
2I0(x)I1(x)

+
x2 [2I0(x)I1(x) + I2(x)I1(x) + I0(x)(I1(x)− 2I2(x)/x)− 2I1(x)(I0(x) + I2(x))]

2I0(x)I1(x)

)
=
NkB

2
lim
x→∞

(
x
[
I0(x)2 + I2(x)I0(x)− 2I1(x)2

]
I0(x)I1(x)

+
x2 [I0(x)(I1(x)− 2I2(x)/x)− I1(x)I2(x)]

2I0(x)I1(x)

)
=
NkB

2
lim
x→∞

(
xI0(x)

I1(x)
− 2

xI1(x)

I0(x)
+
x2 [I0(x)I1(x)− I1(x)I2(x)]

2I0(x)I1(x)

)
L′H· · ·

...

→ NkB
2 6 of 11



respectively, whereas for very high temperatures, that is, for

βµB << 1

the average magnetization and heat capacity for βµB → 0 become

lim
βµB→0

〈M〉 = lim
βµB→0

Nµ
I1(βµB)

I0(βµB)
→ Nµ

0

1
= 0

and

lim
βµB→0

C = lim
βµB→0

NkB (βµB)
2

[
1

2

(
1 +

I2(βµB)

I0(βµB)

)
−
(
I1(βµB)

I0(βµB)

)2
]

→ lim
βµB→0

NkB (βµB)
2

[
1

2

(
1 +

0

1

)
−
(

0

1

)2
]

= lim
βµB→0

NkB
2

(βµB)
2 → 0

3-D: Again, following from the mathematical aside above (or even from the lecture notes), we have
that the partition function for this case is given as

Z = ZN1

=

(
2π

∫ π

0

eβµB cos θ sin θdθ

)N
=

(
−2π

∫ −1
1

eβµBudu

)N
=

[
−2π

1

βµB

(
e−βµB − eβµB

)]N
=

[
2π

βµB

(
eβµB − e−βµB

)]N
=

[
4π

βµB
sinh(βµB)

]N
The average energy is then

〈E〉 = − N
4π
βµB sinh(βµB)

∂

∂β

(
4π

βµB
sinh(βµB)

)
= − N

4π
βµB sinh(βµB)

[
− 4π

β2µB
sinh(βµB) +

4π

β
cosh(βµB)

]
= − N

4π
βµB sinh(βµB)

[
− 4π

β2µB
sinh(βµB) +

4π

β
cosh(βµB)

]
= N

[
1

β
− µB coth(βµB)

]
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The average magnetization is found as

〈M〉 =
N

4π
βµB sinh(βµB)

∂

∂(βB)

(
4π

βµB
sinh(βµB)

)
=

N
4π
βµ sinh(βµB)

∂

∂β

(
4π

βµB
sinh(βµB)

)
=

N
4π
βµ sinh(βµB)

[
− 4π

β2µB
sinh(βµB) +

4π

β
cosh(βµB)

]
= N

[
− 1

βB
+ µ coth(βµB)

]
= Nµ

[
coth(βµB)− 1

βµB

]
and the heat capacity is calculated as follows

C =
d〈E〉
dT

= − 1

kBT 2

∂〈E〉
∂β

= − 1

kBT 2

∂

∂β

(
N

[
1

β
− µB coth(βµB)

])
= − N

kBT 2

[
− 1

β2
+ µ2B2csch2(βµB)

]
= NkB

[
1− (βµB)2csch2(βµB)

]

For very low temperatures, that is, for
βµB >> 1

the average magnetization and heat capacity for βµB →∞ become

lim
µB
kBT
→∞
〈M〉 = lim

µB
kBT
→∞

Nµ

[
coth(βµB)− 1

βB

]
→ Nµ

and

lim
µB
kBT
→∞

C = lim
µB
kBT
→∞

NkB
[
1− (βµB)2csch2(βµB)

]
→ NkB

respectively, whereas for very high temperatures, that is, for

µB

kBT
<< 1
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Figure 5. Here the fixed values of the magnetic field, B, and the temperature, T , are taken to be in arbitrary
units.

the average magnetization and heat capacity for βµB → 0 become

lim
µB
kBT
→0
〈M〉 = lim

µB
kBT
→0

Nµ

[
coth(βµB)− 1

βB

]
→ 0

and

lim
µB
kBT
→0

C = lim
µB
kBT
→0

NkB
[
1− (βµB)2csch2(βµB)

]
→ 0
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Looking at the plots for 1, 2, and 3 dimensions of the average magnetization and heat capacities we
notice that the 2-d magnetization saturates to the maximum value of Nµ slower than the 1-d case,
but faster than the 3-d case. This happens because of the existence of allowed states that have
energies between the extreme values of ±µB. Compared to the 1-d case, these states contribute
less to the magnetization than a completely aligned state, but are relatively more probable than
a completely anti-aligned state. In the 3-d case, there are even more of these in-between states
allowed since for any angle θ the spin can rotate around the B-field without changing its energy.
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2. Read up from elementary books of your choice on thermodynamics, write down the first law of ther-
modynamics, and explain what you understand by entropy, free energy, and chemical potential. The
answer should be not more than half a page.

The first law of thermodynamics states that the change of internal energy, ∆U , for a closed system that
is taken from an initial to a final state of internal thermodynamic equilibrium, through an arbitrary
process, is due to a combination of the heat added to the system, Q, and the work done by the system,
W , yielding an equation of

∆U = Q−W

This is yet another form of the law of conservation of energy for a thermodynamic process consist-
ing of an isolated system that is brought from one state to another, as the total energy remains constant.

Entropy is typically thought of as a measure of the disorder of a system, or as a measure of the number
of ways in which a thermodynamic system can be arranged; however, in the case of the first law of
thermodynamics, entropy is something that is produced in irreversible processes, such as Joule heating,
diffusion, chemical reactions, etc., and, in its differential form, the first law of thermodynamics can be
converted to the second law as

dU = δQ− PdV = TdS − PdV

where the total amount of heat added to a closed system is expressed as δQ = TdS, and S is the
entropy of the system. Even though there is still conservation of energy for an isolated system, if it
is undergoing an irreversible process, the entropy increase results from a generalized displacement in
the system’s conservation of energy, as the energy that is lost to heat cannot be converted to work,
allowing the system to spontaneously move toward thermodynamic equilibrium at maximum entropy.

Free energy (Gibbs, Helmholtz, etc.) in the case of a thermodynamics is the amount of work that a
thermodynamic system can perform in chemical or thermal processes in thermodynamic equilibrium.
In terms of the first law of thermodynamics, for an isolated system, it is the change in internal energy
minus the amount of energy that cannot be used to perform work.

The chemical potential, µ, is a form of potential energy per particle in a thermodynamic process that
is released or absorbed during a chemical reaction in which a particle is removed from or added to or
vice-versa a system. It is the Gibbs free energy per particle.
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