PHYC - 505: Statistical Mechanics
Homework Assignment 1
Solutions

1. A magnetic field B is applied to a system of a large number N of noninteracting spins each of magnetic
moment 4 at temperature 7. Calculate (display analytic expressions) and plot (not merely sketch, do
this with some graphing package)

(a) the magnetization as a function of T' at two given values of B,

(b) the magnetization as a function of B at two given values of T,

(¢) the heat capacity of the system as a function of temperature T for a given value of B.
Do each of these in a 1-dimensional, 2-dimensional, and 3-dimensional systems, carefully watching
differences if any. The first of these is the system treated in class. For all three you have to evaluate

appropriate integrals if necessary and express in terms of special functions such as hyperbolic, Bessel,
etc.

The basis of all your calculations should be the Boltzmann weight exp(—FE/kT) and the expression for
the energy for a spin as F = —uB cosf, where 0 is the angle between the directions of spin moment
and the magnetic field.

Mathematical Aside: Generally speaking, for a system described above in any dimension, the
associated energy, F, as given in lecture, is

E:—ﬁ-E:—uBCOSH

where 6 is the angle between the direction of the spin moment and the applied magnetic field, B. The
partition function for one of the spins is defined as

Zy = /g(E)e’ﬁEd,E: /g(g)eﬁuBcosedQ

where §(#) can be thought of as the weight of each state allowable in the system between a torus of
radius 6 and 6 + df for each of the N spins. In 1-D, 2-D, and 3-D, this would be defined as

91-p(0)d2 = (6(0) +6(0 —m)) db,  ga.p(#)d2 = db),

and
2m

J3-p(6)d) = sin 6do d¢ = 2w sin 6d6,
0

respectively. The partition function of the system of N particles is then given as

z=2zN

(before the Gibbs remedy is applied to the system, where we divide by N!; here this correction is not
important since the properties that are being calculated are not affected by that factor in the end and
therefore the N! factor will not be used in the rest of these solutions).
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The average energy of the system can then be found by taking the negative derivative with respect to
[ of the partition function as follows

The heat capacity of the system can be found by taking the temperature derivative of the average
energy

c_dB) _aE)o9s _ 1 0(E)
T AT 0B OT  kpT? 0B

1-D: (Note: This case of the problem will be solved in the manner done in class.) For a 1 dimensional

system of NV noninteracting particles in equilibrium at temperature, 7', in a magnetic field, B,
with magnetic moment, ;1 there are two possible energy spin states, Ey and E|. The probabilities
of a spin being in either state are

G_BET e_/BEl

e—ﬁEi —+ e—ﬁET
where
Ey = —uB and By =ubB,
1
kT "
The average magnetization for the total magnetization of the system, as given in class, is

are the two energy states, and g =

(M) = Nyt + Ny(—p) = u (Ny — N}
where

Ne—6Br Ne—6EL
Ny =NP(E)= —p———— and N, = NP(E}) = —p

e PEL 4 e PEY e PABL 4 e=BEr’

The average magnetization is then rewritten as

(M) = (Np) = p(Ny — Ny)

e BEr e BEL

= Nu _

(e—fﬁ& +e BBy o BE, 4 BB )

BuB _ n—BuB

e e
=Npy——————

e—BuB 4 BB
= Nputanh (SuB)

uB
— Matadl
Ny tanh (k T)

For very low temperatures, that is, for

uB

— >>1

kgT
the average magnetization becomes constant with respect to both temperature, T, and magnetic
field, B, as the hyperbolic tangent approaches unity,

uB I
— 00 — 00
kpT kpT

B
lim (M) = lim N,utanh(ki;T>—>Nu
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Average Magnetization, 1-d

(M)/Np

kgT/uB ’ uB/ksT

Figure 1. Here the fixed values of the magnetic field, B, and the temperature, T, are taken to be in arbitrary

units.

whereas for very high temperatures, that is, for

uB
— <1
kT

the hyperbolic tangent can be rewritten in terms of its Taylor series expansion, where

23
tanh(x):m—?+~-~

and the average magnetization becomes

B 2B
lim (M)= lim Nptanh (“) N2

B B
250 2B 0 kT kT

The heat capacity, C, is defined as the derivative of the average energy of all the spin states, (E),
with respect to the temperature, T, as
d{E)

dT
Now the average energy of this particular system in 1 dimension is defined (as in the notes)

(E) =NEy+ N E,|
e PEr e PEL
=N ((/LB)Q_,@El T e—BEr + NBe_,@El T e—,BET>
ebfuB _ o—pBuB
P
= —NpuBtanh (SuB)

uB
= —NpBtanh | —
bt (127

C =

=—-NuB

Taking the derivative with respect to the temperature of the above equation we have

d(E) d uB
C= T N/LBdT <tanh (kBT>)

2 2
W2B2 ([ uB
- N 2 (A2
T2 ¢ (kBT)

2
_ pB 2 [ pB
= Nkp (kBT> sech (k:BT>
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Heat Capacity, 1-d

C/Nkp

kel /uB

Figure 2. Here the fixed values of the magnetic field, B, are taken to be in arbitrary units.

For very low temperatures, that is, for

B >>1
kT

the heat capacity approaches zero

2
, L pB " o KB
uéllioo C = ;Aréinj)oo NkB <kBT) sech (M) — 0

kT 1)

whereas for very high temperatures, that is, for

uB
— << 1
kT

the hyperbolic secant can be rewritten in terms of its Taylor series expansion, where
x? 2
SMW@=@—2+~>:ﬂ—§+m

and the heat capacity becomes

2
. . MB 2 ’LLB
1 = 1 Nkp | — h* | ——
im C im B <k3T> sec <k‘BT> — 0

2-D: Following from the mathematical aside above (or even from the lecture notes), we have that the

partition function for this case is given as

Zz=2N

2m
_ (/ eﬁ,uB cos 0d9>
0

This integral has the form of a modified Bessel function of the first kind of integral order n =0

N

1 Us
I,(BuB) = - / ePrB cos(W) o (nu) du
0
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Letting v — 2u, and using the u-substitution that 8 = 2u, and df = 2du, then we have the final
form

I ﬂ
I,(BuB) = o / ePrB cos(9) cos (nf) do
7r

yielding that the above integral for the partition function of the system is

2z = (2nlo(BpB))™

The average energy is then

N 0
~ 91y (31B) 08 (2mlo(BuB))

L(BuB)
Io(BuB)

(E) =
=—-NuB

The average magnetization is found as

N 0
(M) = 2710 (31B) 938 (2mlo(BuB))
I (BuB)

Iy(BuB)

and the heat capacity is calculated as follows

c_ME) 1 9B
T AT kgT? 0B

2 (o)

kT Op To(BuB)

_ NNBa( (B ))
kT2 0B \ Io(BuB)

kpT? Io(Bp B) Io(BuB) OB
_ NuB L(BuB)\® uB

uB N’ (L(BuB)\ 1

= ks (m) ( (W)) + 51 gy JoOkB) + B(5B)
_ nB \* |1 Iz(ﬁuB)> - (Il(ﬂuB))z

=N <k‘BT> 2 (1 " Io(BuB) Io(BuB)

For very low temperatures, that is, for
BuB >>1

The Bessel functions approach each other, that is,

Io(BuB) ~ I (BuB) ~ Iy(BuB) - -

as they grow exponentially toward infinity almost at the same rate, and therefore the average
magnetization and heat capacity for SuB — oo become

lim (M)= lim N L(5uB)

— N
BuB—o0 BuB—o00 ufo(ﬂ B) H
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Average Magnetization, 2-d Average Magnetization, 2-d

—T=10
1k —_—T=10
—T = 5e
—T1'=10
>
N
=
’ keT/uB ’ uB/ksT

Figure 3. Here the fixed values of the magnetic field, B, and the temperature, T, are taken to be in arbitrary
units.

Heat Capacity, 2-d

—B=0.

——B-5]
— B =10

C/Nkp

kgl'/uB

Figure 4. Here the fixed values of the magnetic field, B, are taken to be in arbitrary units.

and

lim C = NkB hm (BuB)? | =
BuB— 00 B—o0

() - ()

Nk 2? [Io(2)? + I(x)Io(v) — 211 (x)?]

z—00 IO( )
vu Nkg 2z [Io(z)? + Ix(2)Io(z) — 211 (2)?]

2?2 21 (2) 11 (z) + Ia(z) 1 (2) + Io(z)([1(x) — 2I2(z) /x) — 211 (z) (Io(x) + Ig(;t))])
21y(x) I (x)
— 214 (x)?]

Nkg .m< a [Io(x)* + Ix(2)Io()
Io(x) 11 ()

2? [Io(z) (I (z) — 215 (x) /x) — I1 (x) 2 (2 )])

2]0(56)]1( )

_ Nk (55[0(%) _prhi(@) | 2? [Th(x) (@) —11($)12(l’)])

Il(l') Io(IL') 2]0(1’)]1(1’)
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respectively, whereas for very high temperatures, that is, for
BuB << 1

the average magnetization and heat capacity for fuB — 0 become

L(BpB) |, 0

ﬁ;}iBIIi>0<M> - ﬁ;}iBHim MIO(BMB) AR T 0
and
i€ = i, |5 (0 260 - (R
= N 05 (145) - (m
= i S (BuB)* =0

3-D: Again, following from the mathematical aside above (or even from the lecture notes), we have
that the partition function for this case is given as

z=2zN

T N
= (27r/ efrBcost gipy 9d9)
0
1 N
= (—277/ eﬁ“B“du>
1

[ N
= ( —BuB _ eﬁp,B):|
BuB
[ 2m BpB —BuB N
— ﬁlu,iB (e —e ):|
[ 47 . N
= 5B &nh(ﬁuB)]
The average energy is then
N 0 47
(B) = — [3 blnh(ﬂuB 195 <[3 smh(ﬁuB)>
4
- ﬂ bmh BuB [ Slnh (BuB) + ﬁcosh(ﬁuB)]
47
T BuB sinh BMB [ smh (BuB) + rl cosh(ﬂuB)]

=N {B — uB coth(ﬁuB)]
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The average magnetization is found as

N 0 47
M) = sinh(BuB >
W= i n(5eB) 6(3B) (ﬂuB (BuB)
N 0
= — h(BuB
S (3uD) 95 (/3 )
N { sinh(BuB) + in cosh(p B)}
= in —
T sinh(BpB) | B°uB TS :
[ ﬁB-%uaw(ﬁu ﬂ
1
=N h(fuB) — ——
[ [Cot (BuB) i B}
and the heat capacity is calculated as follows
O d(E) 1 O(E)
- dT kgT? 0B
1 0 1
N 1
= T { 5 + u2Bzcsch2(5uB)}
= Nkp [1 — (BuB)?csch’®(BuB)]
Average Magnetic Moment, 3-d Average Magnetization, 3-d
1 — i — |
——B=5 —7T =5¢!
—— B =10 —_—T =108
=
>
=
’ kel /B ’ uB/ksT
For very low temperatures, that is, for
BuB >>1

the average magnetization and heat capacity for SuB — oo become

1
lim (M): hm Nu coth(ﬁ,uB)—ﬂ—B — Npu

and

lim C'=lim Nkp [1— (BuB)? csch? (BuB)] — Nkp

T—)OO

kB
respectively, whereas for very high temperatures, that is, for

uB
HE
kT O
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Heat Capacity, 3-d

C/Nkp

kBT/uB

Figure 5. Here the fixed values of the magnetic field, B, and the temperature, 7', are taken to be in arbitrary
units.

the average magnetization and heat capacity for fuB — 0 become

lim (M)= lim Ny coth(ﬂuB)—i —0

B B
,;;BT—>0 k‘;T—>0 BB

and

lim C= lim Nkp [l — (BuB)*csch®(BuB)] — 0

wB uwB
kBT%O kBTHO
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Looking at the plots for 1, 2, and 3 dimensions of the average magnetization and heat capacities we
notice that the 2-d magnetization saturates to the maximum value of Ny slower than the 1-d case,
but faster than the 3-d case. This happens because of the existence of allowed states that have
energies between the extreme values of £uB. Compared to the 1-d case, these states contribute
less to the magnetization than a completely aligned state, but are relatively more probable than
a completely anti-aligned state. In the 3-d case, there are even more of these in-between states
allowed since for any angle 6 the spin can rotate around the B-field without changing its energy.

Looking at the 1, 2, and 3-d Cases for T =1

Looking at the 1, 2, and 3-d Cases for B=1

1-d
1
2-d
3-d

kBT/MB kBT//LB

Looking at the 1, 2, and 3-d Cases for B=1

1 4

1-d
i-d
3-d

C/Nkg

ksT/uB
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2. Read up from elementary books of your choice on thermodynamics, write down the first law of ther-
modynamics, and explain what you understand by entropy, free energy, and chemical potential. The
answer should be not more than half a page.

The first law of thermodynamics states that the change of internal energy, AU, for a closed system that
is taken from an initial to a final state of internal thermodynamic equilibrium, through an arbitrary
process, is due to a combination of the heat added to the system, @), and the work done by the system,
W, yielding an equation of

AU=Q-W

This is yet another form of the law of conservation of energy for a thermodynamic process consist-
ing of an isolated system that is brought from one state to another, as the total energy remains constant.

Entropy is typically thought of as a measure of the disorder of a system, or as a measure of the number
of ways in which a thermodynamic system can be arranged; however, in the case of the first law of
thermodynamics, entropy is something that is produced in irreversible processes, such as Joule heating,
diffusion, chemical reactions, etc., and, in its differential form, the first law of thermodynamics can be
converted to the second law as

dU = 6Q — PdV = TdS — PdV

where the total amount of heat added to a closed system is expressed as dQQ = T'dS, and S is the
entropy of the system. Even though there is still conservation of energy for an isolated system, if it
is undergoing an irreversible process, the entropy increase results from a generalized displacement in
the system’s conservation of energy, as the energy that is lost to heat cannot be converted to work,
allowing the system to spontaneously move toward thermodynamic equilibrium at maximum entropy.

Free energy (Gibbs, Helmholtz, etc.) in the case of a thermodynamics is the amount of work that a
thermodynamic system can perform in chemical or thermal processes in thermodynamic equilibrium.
In terms of the first law of thermodynamics, for an isolated system, it is the change in internal energy
minus the amount of energy that cannot be used to perform work.

The chemical potential, u, is a form of potential energy per particle in a thermodynamic process that
is released or absorbed during a chemical reaction in which a particle is removed from or added to or
vice-versa a system. It is the Gibbs free energy per particle.
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