
Homework 7 - Due December 6, 2016

Given Eq.(i):
dz

dt
+ Ωz = 0, where Ω = α+ iβ and z = x+ iy, with α, β, x, y ∈ R and Ω, z ∈ C,

define a projection operator P such that PΘ = Re(Θ) and (1− P)Θ = iIm(Θ), where Θ is an

arbitrary complex number. Find a closed equation for x(t).

Professer Kenkre’s clarifications:

1. Defining appropriate projection operators and applying them a la Zwanzig to Eq.(i) derive

an equation for the time evolution of x alone (real part of z) containing a proper term, a

memory term and an initial term.

2. Assume an intial condition which will eliminate the initial term and call the resultant eq,

closed in x(t), Eq.(ii).

3. Through EXACT manipulations of the Zwanzig kind simplify Eq.(ii) by eliminating the

projection operators. Make no approximations!

4. Recognize the x evolution equation as something you recognize in physics and solve it

explicitly. Comment.

Solution

Let PΘ = Re(Θ) and (1− P)Θ = iIm(Θ), where Θ is an arbitrary complex number. By applying

the projection operators P and (1− P) to our original differential equation, we get:

P
(
dz

dt
+ Ωz

)
=
dx

dt
+ P(αz − βy + iαy + ixβ)

=
dx

dt
+ αy − βy = 0

(1− P)

(
dz

dt
+ Ωz

)
= i

dy

dt
+ i(αy + βx) = 0

⇒ i
dy

dt
+ iαy = −iβx

⇒ y(t) = y(0)e−αt − β
∫ t

0
dt′e−α(t−t′x(t′)

It follows that
dx

dt
+ αx− βy(0)e−αt + β2

∫ t

0
dt′e−α(t−t′)x(t′) = 0
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Assume y(0) = 0 so that

dx

dt
+ αx+ β2

∫ t

0
dt′e−α(t−t′)x(t′) = 0

If we mimic the Zwanzig approach:

dPz
dt

+ PΩ
[
P + (1− P)

]
z = 0 (1)

d(1− P))z

dt
+ (1− P)Ω

[
(1− P) + P

]
z = 0 (2)

(1)⇒ dPz
dt

+ PΩPz + PΩ(1− P)z = 0

(2)⇒ d(1− P))z

dt
+ (1− P)Ω(1− P)z + (1− P)ΩPz = 0

The solution to Eq. (2) is

(1− P)z(t) = e−(1−P)Ωt(1− P)z(0)−
∫ t

0
dt′e−(1−P)Ω(t−t′)(1− P)ΩPz(t′)

Insert this into Eq. (1) to obtain

⇒ dPz(t)
dt

+ PΩPz + PΩe−(1−P)Ωt(1− P)z(0)− PΩ

∫ t

0
dt′e−(1−P)Ω(t−t′)(1− P)ΩPz(t′) = 0

The first term:
dPz
dt

=
dx

dt

The second term:

PΩPz = αx

The third term:

PΩe−(1−P)Ωt(1− P)z(0) = PΩe−(1−P)Ωtiy(0)

= PΩ

∞∑
n=0

(−1)ntn
[
(1− P)Ω

]n
n!

iy(0)
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Aside:

[
(1− P)Ω

]n
iy(0) =

[
(1− P)Ω

]n−1
(1− P)Ωiy(0)

=
[
(1− P)Ω

]n−1
iαy(0)

=
[
(1− P)Ω

]n−2
iα2y(0)

...

= iαny(0)

That means that the third terms becomes

PΩ

∞∑
n=0

(−1)ntnαn

n!
iy(0) = −βy(0)e−αt

Assume y(0) = 0.

The forth term:

PΩ

∫ t

0
dt′e−(1−P)Ω(t−t′)(iβx(t′)) =

∫ t

0
dt′

∞∑
0

(−1)n(t− t′)n

n!
PΩiαnβx

= −β2

∫ t

0
dt′e−α(t−t′)x(t′)

Putting them together:

dx

dt
+ αx+ β2

∫ t

0
dt′e−α(t−t′)x(t′) = 0

To solve this equation, we can use Laplace Transforms:

L
[
dx

dt

]
= −αL

[
x]− β2L

[ ∫ t

0
dt′e−α(t−t′)x(t′)

]
(3)

Note, this is a convolution

L
[
(f ∗ g)(t)

]
= L

[ ∫ t

0
dt′f(t− t′)g(t′)

]
= f̃(ε)g̃(ε)

Since

L
[
e−αt

]
=

1

ε+ α
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(3)⇒ εx̃(ε)− x(0) = −αx̃(ε)− β2 x̃(ε)

ε+ α

⇒ x̃(ε)

(
ε+ α+

β2

ε+ α

)
= x̃(ε)

(
(ε+ α)2 + β2

ε+ α

)
= x(0)

⇒ x̃(ε) = x(0)

(
ε+ α

(ε+ α)2 + β2

)

L−1
[
x̃(ε)

]
= x(0)L−1

[
ε+ α

(ε+ α)2 + β2

]
⇒ x(t) = x(0)e−αtcosβt

This is a damped harmonic oscillator.
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