Summary of Dr. Kang's note on Probability Distributions

Discrete random variables

- Can only possess integer values (whole numbers). No decimal values.
- Possible values in the sample space can be counted or visualized.

Dr. Kang only discussed Bernoulli random variables (X = 0, 1) and Binomial random variables (X = 0, 1, 2, ..., n) where n is the sample size but there are other types of discrete random variables such as: Negative Binomial, Poisson, Geometric, Hypergeometric random variables.

For any discrete random variable X, we have the following

- Probability mass function (pmf)

$$f(x) = P(X = x)$$
, $x = \text{realization of X}$

- Cumulative distribution function (Cdf)

$$F(x) = P(X \le x)$$

Stata functions for Binomial distribution

- binomialp(n, x, p) for calculating pmf f(x) = P(X = x)

code: disp binomialp(n, x, p), n = sample size, x = realization of X and p = prob. of success

- binomial(n, x, p)for calculating $F(x) = P(X \le x)$

code: disp binomial(n, x, p)

- comb(n, x) for calculating nCx

code: disp com(n,x)

factorial(n) or n!
code: disp exp(Infactorial(n))

Example 4.3.3 (Page 103). We will practice this together with Stata.

10% of a certain population is color blind. That is, p = 0.1

Draw a random sample of 25 people from the population and calculate the following probabilities

- (a) Five or fewer will be color blind. That is: $P(X \le x = 5) = disp\ binomial(25,5,.1)$.
- (b) Six or more will be color blind. That is: $P(X \ge 6 = x) = 1 P(X \le 5 = x 1) = 1 = disp \ binomial(25,5,.1)$.
- (c) Between six and nine inclusive will be color blind. That is: $P(6 \le X \le 9) = P(X \le 9) P(X \ge 6) = P(X \le 9) P(X \le 9) = P(X \le$
- (d) Two, three or four will be color blind. That is: $P(X \le 4) = disp\ binomial(25,4,.1)$
- (e) At least one is color blind $P(X \ge 1) = 1 P(X \le 0) = 1 P(X = 0) = disp \ 1 binomialp(25,0,.1)$

Continuous random variables

Can take any value within defined interval or range.

Examples of continuous random variable

X= the height of a randomly selected male physician from UNM Health Center.

R=rate of discovery of patients in a hospital.

S = salary of physicians in New Mexico

Probability density function (pdf)

f(x) is called the probability density function (pdf) of X

Properties

- f(x) > 0

Cumulative distribution function (cdf)

- $F(x) = P(X \le x)$ is the area enclosed by the graph of f(x), x-axis and the vertical line at the point x. That is,

$$F(x) = P(X \le x) = P(-\infty < X \le x).$$

Facts

- $x_1 \le x_2$, then $F(x_1) \le F(x_2)$
- $-\lim_{x\to-\infty}F(x)=0\ and\ \lim_{x\to\infty}F(x)=1$

y = f(x)

Types of Continuous distributions

(a) Normal Distribution

If a random variable X is normally distributed, we can write

- $X \sim N(\mu, \sigma^2)$. Mean = μ and Variance = σ^2 .

-
$$f(x) = \frac{1}{\sqrt{2\pi\sigma}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$
. Here, $f(x)$ is the pdf

- F(x) = P(X < x). Here, F(x) is the cdf

Facts

- Symmetric about its mean μ . That is, $P(X \le \mu) = P(X \ge \mu) = 0.5 \text{ and } P(X \le \mu a) = P(X \ge \mu a) \text{ for any constant } a.$
- Mean = median = mode
- Area under the curve = 1

Empirical Formula

68 –95 –99.7 rule (for how much of the distribution is within 1, 2 and $3\sigma's$ from the center μ)

(b) Standard normal distribution

This is a special case of Normal distribution. Here, $Mean = \mu = 0$ and $Variance = \sigma^2 = 1$. A standard normal random variable is usually represented by Z. It is also called standardized score or z-score. Thus,

- $Z \sim N(0,1)$.

-
$$f(z) = \frac{1}{\sqrt{2\pi\sigma}}e^{-\frac{z^2}{2}}$$
. Here, $f(z)$ is the pdf

- $\Phi(z) = P(Z < z)$. Here, $\Phi(z)$ is the cdf

For standard normal distribution Table see Page A38 -A39

Stata functions for

cdf of standard normal distribution: normal(z)

Code:

- (a) disp normal(z) for $\Phi(z) = P(Z < z)$
- (b) disp 1 normal(z) for $1 \Phi(z) = P(Z > z)$
- (c) $disp\ normal(z_2) disp\ normal(z_1)$ for $P(z_1 < Z < z_2)$

Examples. Practice these on Stata.

- P(Z ≤2.45) = Φ (2.45) = disp normal(2.45)
- $P(Z > 2.45) = 1 \Phi(2.45) = disp 1 normal(2.45)$
- $P(0.84 < Z \le 2.45) = \Phi(2.45) \Phi(0.84) = disp normal(2.45) normal(.84)$

More on this next Friday

- pdf of standard normal distribution: normalden(z)