

Quiz

What percent (range) of resting length in muscle generates the greatest tension?

In your own words, how does Sarcomere Length effect tension (force production)?

Draw the Force-Velocity Relationship

Key Concepts

Weight: The effect gravity has on a given mass

Force = Mass x Acceleration

Body Weight = Mass x Acceleration_{gravity}

Example:

Mass: 80 kg Accel_{grav}: 9.81 m/s/s

Answer: 785 Kg m/s²

785 Newtons

Quiz

 What is the body weight of a person who has a mass of 60 kg here on earth?

QUIZ

- Draw a lever arm including the following components:
 - Axis of Rotation
 - Muscular Effort
 - Resistance
- Include the following mechanical aspects:
 - Rotary Force
 - Stabilizing Force
 - Total Muscular Force

Torque

Torque = Force x Distance Perpendicular

**To hold a weight with the elbow at 90° External Torque = Muscular Torque

Quiz (Partner Collaboration!)

Diagram a lever arm with the muscular effort at 90 degrees .025m from the elbow

- How much external torque is generated by an object with a mass of 5 kg when it is held in the hand .4m from the elbow?
- How much force must the biceps generate to overcome the weight held in the hand?

Quiz

Diagram a lever arm with the muscular effort at 90 degrees .025m from the elbow

- □ How much external torque is generated by a 15 kg weight held in the hand .4m from the elbow?
- How much force must the biceps generate to overcome the weight held in the hand?

Interpreting Mechanical Adv.

- If the MA ratio > 1.0
 - The required magnitude of force applied (effort) is LESS than the magnitude of the resistance
- If the MA ratio < 1.0
 - The required magnitude of force applied (effort) is GREATER than the magnitude of the resistance
 - Mechanical Disadvantage (less effective because more force required)

