

Maximal Contraction Force-Velocity Relationship

Quiz

What percent (range) of resting length in muscle generates the greatest tension?

In your own words, how does Sarcomere Length effect tension (force production)?

Draw the Force-Velocity Relationship

Key Concepts

Weight: The effect gravity has on a given mass
Force = Mass x Acceleration
Body Weight $=$ Mass \times Acceleration $_{\text {gravity }}$
Example:
Mass: 80 kg
Accel ${ }_{\text {grav: }}: 9.81 \mathrm{~m} / \mathrm{s} / \mathrm{s}$
Answer: $785 \mathrm{Kg} \mathrm{m} / \mathrm{s}^{2}$
785 Newtons

Quiz

What is the body weight of a person who has a mass of 60 kg here on earth?

QUIZ

- Draw a lever arm including the following components:
- Axis of Rotation
- Muscular Effort
- Resistance
- Include the following mechanical aspects:
- Rotary Force
- Stabilizing Force
- Total Muscular Force

Torque

Torque $=$ Force \times Distance Perpendicular

**To hold a weight with the elbow at 90° External Torque = Muscular Torque

External Torque = Muscular Torque (Elbow at 90 Degrees)

External Torque $=$ Resistance \times Resistance Arm

Muscular Torque $=$ Muscular Effort x Effort Arm

How much External Torque is generated by the 1.5 kg Milk held in the hand .35 m from the elbow?

$$
\mathrm{T}_{\text {external }}=\mathrm{F} \times \mathrm{D}_{1}
$$

$\mathrm{T}_{\text {external }}=1.5 \mathrm{~kg} \times 9.81 \mathrm{~m} / \mathrm{s}^{2} \times .35 \mathrm{~m}$
$T_{\text {external }}=14.72 \mathrm{Nx.35m} \quad 5.15 \mathrm{Nm}$

External Torque = Muscular Torque

 (Elbow at 90 Degrees)How much force must the biceps create to overcome the weight held in the hand?
$\mathrm{T}_{\text {external }}=\mathrm{T}_{\text {muscular }} \Longleftarrow$ To hold steady at 90 Degrees

Quiz

Diagram a lever arm with the muscular effort at 90 degrees .025 m from the elbow
How much external torque is generated by a 15 kg weight held in the hand .4 m from the elbow?

How much force must the biceps generate to overcome the weight held in the hand?

Mechanical Advantage

A ratio between the length of the

 effort arm and the resistance arm$$
\text { Mechanical Advantage }=\frac{\text { Effort Arm }}{\text { Resistance Arm }}
$$

Interpreting Mechanical Adv.

- If the MA ratio > 1.0
- The required magnitude of force applied (effort) is LESS than the magnitude of the resistance

If the MA ratio < 1.0

- The required magnitude of force applied (effort) is GREATER than the magnitude of the resistance
- Mechanical Disadvantage (less effective because more force required)

A First-Class Lever (The Forearm)

Mechanical Advantage

MA = EA/RA

If the lever stays balanced what does this tell me about the torques generated by the resistance and the effort?

1st Class Levers

A Second-Class Lever (The Foot)

Mechanical Advantage

\qquad

Mechanical Advantage $=\frac{\text { Effort Arm }}{\text { Resistance Arm }}$

2nd Class Levers

A Third-Class Lever (The Forearm)

