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Model-Fitting with Linear Regression: Power Functions 
In the biological sciences it has long been recognized that body size scales predictably with 
various life history parameters.  These scaling relationships are known as invariant relationships 
as no matter what the body size (from ants to elephants) it is possible to predict certain life 
history parameters from a single equation.  Recently members of the biology department at 
UNM have proposed a hypothesis that states these invariant relationships are caused by the 
fundamental metabolic constraints that all organisms face.  The invariance is a by-product of the 
fact that most organisms have similar metabolic pathways (e.g. blood-carrying capillaries) that 
simply scale with body size.  Through some relatively complex math involving the space-filling 
fractal branching networks of three-dimensional animals, they predict that the scaling 
relationship of metabolic rate to body size should be a power function with a scaling exponent of 
0.75.  We can look at this hypothesis as a regression analysis. 
 
For now let’s not worry about power functions, but notice that the scaling exponent they are 
referring to is nothing more than β.  That is they hypothesize that when we run a linear 
regression between the metabolic rate and body size of any animal, or class of animals, the slope 
should be 0.75 (± error).  Therefore, let’s test the hypothesis that β = 0.75 by looking at a sample 
of data collected on a wide variety of primate species.  The following data (n = 25) come from 
Leonard and Robinson (1997, AJPA): 
 
Species Weight (kg) RMR 
A. palliata 8.5  363 
A. palliata 6.4  293 
A. trivirgatus 0.85  46 
A. geoffroyi 8.41  346 
C. molloch 0.7  54 
C. apella 2.6  143 
C. albifrons 2.4  135 
S. imperator 0.4  35 
S. fusicollis 0.3  28 
S. sciureus 0.8  66 
C. albigena 7.9  327 
C. guereza 7  265 
M. fascicularis 5.5  331 
P. anubis 29.3  956 
P. anubis 13  520 
H. lar  6  292 
P. troglodytes 39.5  1036 
P. troglodytes 29.8  839 
P. pygmaeus 83.6  1948 
P. pygmaeus 37.8  1074 
S. syndactylus 10.5  408 
!Kung  46  1383 
!Kung  41  1099 
Ache  59.6  1591 
Ache  51.8  1394 
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RMR is the resting metabolic rate, which is the energy required to run the body when the body is 
doing nothing.  Notice that primate species in this data set range from the smallest Ceboidea to 
largest Hominioidea. 
 
The first thing is to plot out the data in graphical form: 
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Now, from this output we can see there is a very strong relationship between weight and RMR, 
therefore our r2 value will be very close to 1.  But our job is to accurately describe this 
relationship and test our hypothesis of interest.  Although the above relationship is very close, 
notice that it is not necessarily linear.  The straight line is a fitted linear equation, and even 
though the data points fall close to the line, most are above it suggesting that the actual function 
is concave-up (the dashed line).  Such relationships are often power functions.  Like the 
exponential function, a power function can be calculated from a linear equation using some 
simple algebra once we have linearized our data. 
 
In this example we will not go through all the hand calculations but straight to the computation 
in EXCEL and MINITAB, as they are the standard calculations simply run on log-transformed 
data. 
 
First we take the base of the natural logarithms for both the X and the Y data, and plot them out to 
see if we have successfully linearized the relationship: 
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The fitted line is a linear equation, and the r2 value is almost perfect (a very rare outcome!).  
Straight away, the strength of the r2 value suggests there must be some very powerful constraints 
behind this relationship, a common feature of scale invariance. 
 
To calculate our initial hypothesis test, we run the regression in MINITAB at the a = 0.05 (95%) 
confidence level to test the hypothesis: 
 
HO: βH*A = 0 
HA : not HO
 

Regression Analysis 
 
The regression equation is 
logRMR = 4.24 + 0.760 logKg 
 
Predictor       Coef       StDev          T        P 
Constant      4.24089     0.03238     130.95    0.000 
logKg         0.75989     0.01231      61.72    0.000 
 
S = 0.1004      R-Sq = 99.4%     R-Sq(adj) = 99.4% 
 
Analysis of Variance 
 
Source       DF          SS          MS         F        P 
Regression    1      38.380      38.380   3809.81    0.000 
Error        23       0.232       0.010 
Total        24      38.612 
 

 
In the ANOVA table notice that the unexplained sum of squares is extremely small, suggesting 
that nearly all the variation between RMR and body size can be explained by the linear function 
logRMR = 4.24 + 0.760 logKg.  The important value we are interested in here is β = 0.76, a 
value very close to the hypothesized value of 0.75. 
Before we test the value of our β let’s convert the equation from the linearized log transform into 
raw values.  Again, we use a little algebra. 
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logY = loga + βlogX 
 
elogY = ea + βelogX

 
Y = AXβ
 
So, our regression equation is now a power function RMR = 69.47(Weight0.76), that is resting 
metabolic rate increases as a power function of weight with a scaling exponent of 0.76. 
 
To test whether β = 0.76 is statistically significant from a predicted value of 0.75 we’ll put 
confidence limits around our β. 
 
To calculate our standard error of the regression coefficient: 
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And the TCRIT {0.05, 23} = 2.069, 
 
Therefore the confidence limits are: 
 
CLL = 0.76 – 0.0123*2.069 = 0.735 
CLU = 0.76 + 0.0123*2.069 = 0.785 
 
As the hypothesized value of β = 0.75 falls within the 95% confidence limits set around our 
calculated β, we conclude that the predictions of the metabolic scaling hypothesis are met by our 
sample of primate data.  That is to say that across a wide sample of primate body sizes 
(representing a good estimate of the population range) the resting metabolic rate is scale 
invariant and determined by the scale invariance of the mammalian fractal branching network of 
blood-carrying capillaries. 
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