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Data Transforms: Natural Logarithms and Square Roots 
 

Parametric statistics in general are more powerful than non-parametric statistics as the 
former are based on ratio level data (real values) whereas the latter are based on ranked or 
ordinal level data.  Of course, non-parametrics are extremely useful as sometimes our data is 
highly non-normal, meaning that comparing the means is often highly misleading, and can lead 
to erroneous results.  Non-parametrics statistics allow us to make observations on statistical 
patterning even though data may be highly skewed one way or another.  However, by doing so, 
we loose a certain degree of power by converting the data values into relative ranks, rather than 
focus on the actual differences between the values in the raw data.  The take home point here is 
that we always use parametric statistics where possible, and we resort to non-parametrics if we 
are sure parametrics will be misleading. 
 
 Parametric statistics work on ratio level data, that is data that has a true zero value (where 
zero means absence of value) and the intervals between data are consistent, independent of the 
data point value.  The obvious case in point are the Roman numeral real values we are used to 
counting everyday {…, -4, -3, -2, -1, 0, 1, 2, 3, 4,…}.  However, these are not the only values 
that constitute ratio level data.  Alternatives are logged data, or square rooted data, where the 
intervals between the data points are consistent, and a true zero value exists. 
 
 The possibility of transforming data to an alternative ratio scale is particularly useful with 
skewed data, as in some cases the transformation will normalize the data distribution.  If the 
transform normalizes the data, we can go ahead and continue to use parametric statistics in 
exactly the same way, and the results we get (p values etc.) are equally as valid as before. 
 

The way this works is that both the natural logarithm and the square root are 
mathematical functions meaning that they produce curves that affect the data we want to 
transform in a particular way.  The shapes of these curves normalize data (if they work) by 
passing the data through these functions, altering the shape of their distributions.  For example 
look at the figures below. 
 
Mathematically, taking the natural logarithm of a number is written in a couple of ways: 

 
xX ln= , or 

xX elog=  
 

And taking the square root is written: 
 

xX =  
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Looking at the inset figure we can see that logging values that are less than 1 on the X axis will 
result in negative log values; even though this may seem to be a problem intuitively, it is not.  
This is because ln(1)=0 , therefore ln(<1)<0.  In fact ln(0) is undefined meaning that the log 
function approaches the Y axis asymptotically but never gets there.  A usual method of dealing 
with raw data where many of the values are less than 1 is to add an arbitrary constant to the 
entire data set and then log transform; in this way we avoid dealing with negative numbers. 
 
 What does all this mean?  Well, transforming data sets works most effectively for data 
distributions that are skewed to the right by the presence of outliers.  However, transforming the 
data does not always work as it depends ultimately on the specific values involved.  In general, it 
is best to attempt log transforming first, if that doesn’t work try square root transforming, and if 
that doesn’t work, go with a non-parametric test. 
 

ln
(X

)/s
qr

t(X
)

Outlier 

Looking at the top figure we can see that the 
presence of any outliers on the X axis will be 
reduced on the Y axis due to the shape of the 
curves.  This effect will be most effective with 
the log function as opposed to the square root 
function (√).  We can extrapolate out by seeing 
that given the curve of the log function the 
more extreme the outlier, the greater the affect 
of log transforming. 
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MINITAB EXAMPLE 
 
 It is very easy to transform data either in EXCEL or MINITAB (I usually use EXCEL).  
In EXCEL the code is simply   =ln(X), where X is your data, and you can click and drag the 
formula down a whole column of data.  In MINITAB you can use the CALCULATOR function 
under CALC on the toolbar and store the transformed variables in a new column. 
 
 An example comes from Binford (2001) using data on hunter-gatherer group sizes 
(N=227); I won’t bother to list all 227 data points… 
 
 Reading the data into MINITAB, to look at the normality of the data we need to run the 
descriptive stats, do a normality test and look at the distribution.  For the descriptive stats, in 
MINITAB procedure is: 
 
>STAT 

 >BASIC STATISTICS  

  >DESCRIPTIVE STATISTICS 

   >Double click on the column your data is entered 

    >GRAPHS: choose BOXPLOT and GRAPHICAL 

SUMMARY,  

     >OK 

      >OK 

 
The output reads: 
 
Descriptive Statistics 
 
Variable        N     Mean   Median  Tr Mean    StDev  SE Mean 
GROUP1        227   17.436   16.000   16.358    9.508    0.631 
 
Variable      Min      Max       Q1       Q3 
GROUP1      5.600   70.000   11.000   19.700 
 
 
 
With the two graphics: 
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From the descriptive stats output we can see the mean and median are different, especially 
considering the standard error.  We also see from the graphical output, the boxplot shows a 
bunch of outliers, and a heavily skewed distribution.  The Anderson-Darling result on the 
graphical summary gives p=0.000, meaning that the data is very non-normal.  Given the 
skewness of the data and the presence of outliers, log transforming is at least worth trying. 
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 So, logging the data in EXCEL and transferring it into MINITAB we run the same set of 
procedures, leading to the following outputs: 
 
Descriptive Statistics 
 
Variable        N     Mean   Median  Tr Mean    StDev  SE Mean 
LN Group      227   2.7470   2.7726   2.7339   0.4567   0.0303 
 
Variable      Min      Max       Q1       Q3 
LN Group   1.7228   4.2485   2.3979   2.9806 
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Well, while it was a good idea to try a log transform, and we see from the descriptive 
statistics that the mean and median a very close, the Anderson-Darling result still tells us that the 
data is non-normal.  We see from the boxplot that we still have a few stubborn outliers.  We have 
made the data kind of symmetrical, but unfortunately it is still non-normal: we have to go ahead 
and use non-parametric statistics from here if we want to use this data statistically. 

 
Let’s try a second example.  We’ll take some more data from Binford (2001), this time 

referring to the mean annual aggregation size of terrestrial hunter-gatherers (N=181).  Following 
the same procedures as above we find the following:  For the raw data 

 
Descriptive Statistics 
 
Variable        N     Mean   Median  Tr Mean    StDev  SE Mean 
GROUP2        181    40.13    36.00    38.86    15.66     1.16 
 
Variable      Min      Max       Q1       Q3 
GROUP2      19.50   105.00    29.50    50.00 
 
 
And, 
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We see that the median and means are not equal, and the Anderson-Darling stat is non-
significant, so logging the data and putting it into MINITAB we get: 
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Descriptive Statistics 
 
Variable        N     Mean   Median  Tr Mean    StDev  SE Mean 
lnGROUP2      181   3.6248   3.5835   3.6147   0.3616   0.0269 
 
Variable      Min      Max       Q1       Q3 
lnGROUP2   2.9704   4.6540   3.3842   3.9120 
 
 
And, 
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In this case we see that the mean and median are now very similar, and the boxplot shows the 
presence of no outliers.  The Anderson-Darling test shows a significance level of roughly 0.02 
(98%), and while this is less than the usual α level of 0.05 (95%), this result is pretty strong.  
And here we come up against the subjectivity of statistics; it is up to the observer to decide 
whether this data is normal enough for parametric statistics.  Most would argue that it is, given 
that, in reality, the Anderson-Darling test is very conservative in that it will detect the slightest 
deviation from normality, and that parametric statistics are remarkably robust, only being 
dramatically effected by highly non-normal data.  I would accept the log-transformed data as 
close enough to normal to use parametric statistics. 
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