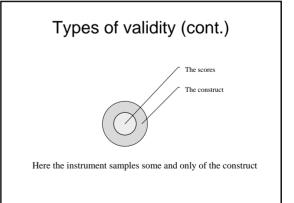
Validity and Reliability

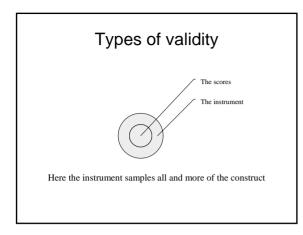
Chapter 8

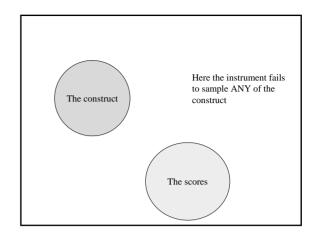
Validity and Reliability

- <u>Validity</u> is an important consideration in the choice of an instrument to be used in a research investigation
 - It should measure what it is supposed to measure
 Researchers want instruments that will allow them to make warranted conclusions about the characteristics of the subjects they study
- <u>Reliability</u> is another important consideration, since researchers want consistent results from instrumentation
 - Consistency gives researchers confidence that the results actually represent the achievement of the individuals involved

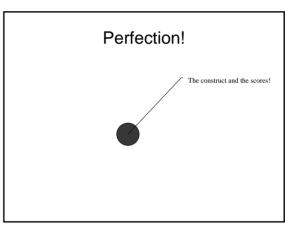
Reliability

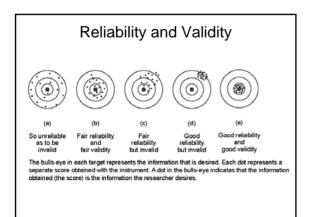

- · Test-retest reliability
- Inter-rater reliability
- Parallel forms reliability
- Internal consistency (a.K.A. Cronbach's alpha)

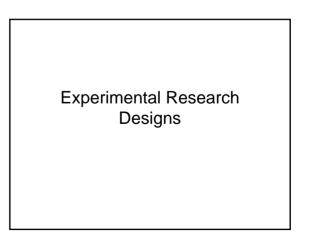

Validity


- Face
 - Does it appear to measure what it purports to measure?
- Content
 - Do the items cover the domain?
- Construct
 - Does it measure the unobservable attribute that it purports to measure?

Validity


- Criterion
 - Predictive
 - Concurrent
- Consequential





Inferring Causality

Sir Bradford Hill

- Strength of association
- Consistency
- Specificity
- Temporal order
- · Dose-Response (biological gradient)
- Plausibility
- Experimental evidence
- Analogy

Fundamentals of Experimental and Quasi-Experimental Research

- · Random selection and random assignment :
 - » Distinguish between "selection" and "assignment"
 - » Random selection helps to assure population validity
 - » If you incorporate random assignment

Experimental research

» If you do not use random assignment
Quasi-experimental research

Fundamentals of Experimental and Quasi-Experimental Research (cont'd.)

- When to use experimental research design :
 - » If you strongly suspect a cause-and-effect relationship exists between two conditions, *and*
 - » The independent variable can be introduced to participants and can be manipulated, *and*
 - » The resulting dependent variable can be measured for all participants

Internal and External Validity

- "Validity of research" refers to the degree to which the conclusions are accurate and generalizable
- Both experimental and quasi-experimental research are subject to threats to validity
- If threats are not controlled for, they may introduce error into the study, which will lead to misleading conclusions

Internal and External Validity

- "Validity of research" refers to the degree to which the conclusions are accurate and generalizable
- Both experimental and quasi-experimental research are subject to threats to validity
- If threats are not controlled for, they may introduce error into the study, which will lead to misleading conclusions

Threats to External Validity

- <u>External validity</u>—extent to which the results can be generalized to other groups or settings
 - » Population validity—degree of similarity among sample used, population from which it came, and target population
 - » Ecological validity—physical or emotional situation or setting that may have been unique to the experiment
 - » If the treatment effects can be obtained only under a limited set of conditions or only by the original researcher the findings have low ecological validity.

Threats to Internal Validity

dependent variable are a direct result of the manipulation

- of the independent variable
- » History-when factors other than treatment can exert influence over the results; problematic over time
- » Maturation-when changes occur in dependent variable that may be due to natural developmental changes; problematic over time
- » Testing-also known as "pretest sensitization"; pretest may give clues to treatment or posttest and may result in improved posttest scores
- » Instrumentation Nature of outcome measure has changed.

Threats to Internal Validity (cont'd.)

- » Regression Tendency of extreme scores to be nearer to the mean at retest
- » Implementation-A group treated in an unintentional differential manner.
- » Attitude-Hawthorne effect, compensatory rivalry.
- » Differential selection of participants-participants are not selected/assigned randomly
- » Attrition (mortality)-loss of participants
- » Experimental treatment diffusion Control conditions receive experimental treatment.

Experimental and Ouasi-Experimental Research Designs

- · Commonly used experimental design notation :
 - » X₁ = treatment group
 - » X₂ control/comparison group =
 - 0 = observation (pretest, posttest, etc.)
 - R random assignment =

Common Experimental Designs

• <u>Single-group pretest-treatment-posttest design:</u> 0

х

0

- » Technically, a pre-experimental design (only one group; therefore, no random assignment exists)
- » Overall, a weak design
 - »Whv?

Common Experimental Designs (cont'd.)

• Two-group treatment-posttest-only design:

R	X_1	0
R	X_2	0

- » Here, we have random assignment to experimental, control groups
- » A better design, but still weak-cannot be sure that groups were equivalent to begin with

Common Experimental Designs (cont'd.) • <u>Two-group pretest-treatment-posttest design</u>:

R	0	X_1	0
R	0	\mathbf{X}_2	0

» A substantially improved design-previously

identified errors have been reduced

Common Experimental Designs (cont'd.)

•	Solomon	four-group	design:

R	0	\mathbf{X}_1	0
R	0	X_2	0
R		\mathbf{X}_1	0
R		X_2	0

- » A much improved design-how??
- » One serious drawback—requires twice as many participants

Common Experimental Designs (cont'd.)

Factorial	designs:

R	0	\mathbf{X}_1	γ_1	0
R	0	X_2	γ_1	0
R	0	\mathbf{X}_1	γ_2	0
R	0	X_2	γ_2	0

- » Incorporates two or more factors
- » Enables researcher to detect differential differences (effects apparent only on certain combinations of levels of independent variables)

Common Experimental Designs (cont'd.)

- <u>Single-participant measurement-treatment-measurement</u> <u>designs</u>:
 - 0 0 0 | X 0 X 0 | 0 0 0
 - » Purpose is to monitor effects on one subject
 - » Results can be generalized only with great caution

Common Quasi-Experimental Designs

• <u>Posttest-only design with nonequivalent groups</u>:

 $\begin{array}{ccc} X_1 & O \\ X_2 & O \end{array}$

- » Uses two groups from same population
- » Questions must be addressed regarding equivalency of groups prior to introduction of treatment

Common Quasi-Experimental Designs (cont'd.)

- Pretest-posttest design with nonequivalent groups:
 - $\begin{array}{ccc} O & X_1 & O \\ O & X_2 & O \end{array}$
 - » A stronger design-pretest may be used to establish

group equivalency

Similarities Between Experimental and Quasi-Experimental Research

- · Cause-and-effect relationship is hypothesized
- Participants are randomly assigned (experimental) or nonrandomly assigned (quasi-experimental)
- · Application of an experimental treatment by researcher
- Following the treatment, all participants are measured on the dependent variable
- Data are usually quantitative and analyzed by looking for significant differences on the dependent variable