University of New Mexico Mechanical Engineering Fall 2009 PhD qualifying examination Heat Transfer

Closed book. Formula sheet and calculator are allowed, but not cell phones, computers or any other wireless device. Time allowed: 150 minutes. Part 1: General knowledge questions (25 points)

- 1. In which case is it less likely to find a uniform temperature in a bird being baked in an oven under identical conditions?
 - (a) a quail
 - (b) a pheasant
 - (c) a turkey

Answer:

- 2. For a certain amount of time, several terms in the Fourier series solution are necessary to describe the temperature distribution in a onedimensional transient problem. Why?
 - (a) because the low-frequency terms have not yet decayed
 - (b) because the high-frequency terms have not yet decayed
 - (c) because the Biot number decreases after some time

Answer:

- 3. What does the Biot number represent physically?
 - (a) the ratio of thermal resistance of the solid to the thermal resistance of the convective boundary layer
 - (b) the ratio of thermal resistance of the convective boundary layer to the thermal resistance of the solid.
 - (c) the dimensionless temperature gradient just outside the surface

Answer:

- 4. In a finite difference simulation of transient temperature distributions, what is one consequence of increasing the refinement the spatial discretization?
 - (a) better accuracy and higher computational speed
 - (b) decrease in the maximum allowable timestep
 - (c) faster execution of the simulation

Answer:

- 5. How does the conductivity of a gas vary with temperature in general?
 - (a) increases
 - (b) decreases
 - (c) stays constant

Answer:

- 6. Why are metal handles on wood stoves often coiled, rather than made with a solid piece?
 - (a) the thermal resistance increases, thereby producing a region cool enough to handle
 - (b) to allow for thermal expansion
 - (c) because coiled handles look quaint and old-fashioned

Answer:

- 7. What material offers higher thermal resistance?
 - (a) wood
 - (b) still air
 - (c) Spam

Answer:

- 8. What conditions are sufficient for the use of the lumped capacitance method?
 - (a) low convection coefficient
 - (b) high conductivity
 - (c) low Biot number

Answer:

- 9. Some people can walk on hot coals. Why would they not be able to walk on large ball bearings at the same temperature?
 - (a) ball bearings contain more heat
 - (b) ball bearings offer less resistance to the flow of heat
 - (c) ball bearings could roll around and cause the person to fall

Answer:

- 10. Does it make sense to define a Biot number for thermal radiation?
 - (a) yes, since it is possible to express radiative heat loss in the form of the Newton equation
 - (b) no, because radiation is a completely different mechanism
 - (c) no, because radiative heat loss is a function of temperature

Answer:

Part 2: Problems (25 points per question)

Attempt all problems in this section, clearly stating any assumptions and simplifications used in your solution. Problem 1

For a certain period during curing of freshly poured concrete, the reaction of cement with water releases 240 W/m^3 . Consider a concrete slab of 0.15 m thickness, poured on an insulating polystyrene foam substrate. If the temperature of the ambient air is 10°C, calculate the maximum temperature in the slab during this stage of curing, also indicating the location. The thermal conductivity of concrete is 0.8 W/m/K, and the convection coefficient at the surface of the slab is $4 \text{ W/m}^2/\text{K}$. State any necessary assumptions.

Problem 2

Hint: The problem can be made easier by neglecting the temperature drop across the metal tank wall and the air boundary layer around the insulation. Comment on the legitimacy of such an assumption.

ambient T = 20 degrees C

horse hair mat

Problem 3

A small spherical hot air balloon, 10 m in diameter, weighs 130 kg with a small gondola and a (small) passenger. How much fuel must be consumed (in kJ/h) if the balloon is to hover at low altitude in still 25°C air? The heat transfer coefficient on the outside of the balloon, resulting from natural convection, is $2.15 \text{ W/m}^2/\text{K}$.

Hint: Consider the air temperature necessary to maintain the required density of the air inside the balloon.

T (K)	ho (kg/m ³)	c_p (kJ/kg · K)	$\begin{array}{c} \mu \cdot 10^7 \\ (N \cdot s/m^2) \end{array}$	$\frac{\nu \cdot 10^6}{(m^2/s)}$	$k \cdot 10^3$ (W/m · K)	$rac{lpha\cdot 10^6}{(\mathrm{m}^2/\mathrm{s})}$	Pr
Air							
100	3.5562	1.032	71.1	2.00	9 34	2 54	0 786
150	2.3364	1.012	103.4	4 426	13.8	5.84	0.758
200	1.7458	1.007	132.5	7.590	18.1	10.3	0.737
250	1.3947	1.006	159.6	11 44	22.3	15.9	0.720
300	1.1614	1.007	184.6	15.89	26.3	22.5	0.707
350	0.9950	1.009	208.2	20.92	30.0	29.9	0.700
400	0.8711	1.014	230.1	26.41	33.8	38 3	0.690
450	0.7740	1.021	250.7	32.39	37.3	47.2	0.686
500	0.6964	1.030	270.1	38.79	40.7	56.7	0.684
550	0.6329	1.040	288.4	45.57	43.9	66.7	0.683
600	0 5804	1.051	305 8	52 69	46.0	76.0	0.685
650	0.5356	1.063	322.5	60.21	40.9	87.2	0.005
700	0.4975	1.005	338.8	68 10	52 /	08.0	0.690
750	0.4643	1.075	354.6	76.37	54.0	100	0.093
800	0.4354	1.099	369.8	84.93	57.3	120	0.702
850	0.4097	1.110	384 3	03.80	50.6	121	0.716
900	0.3868	1.121	398 1	102.0	62.0	1/13	0.710
950	0.3666	1.121	411.3	112.2	64.3	155	0.720
1000	0.3482	1 141	424.4	121.0	66 7	169	0.725
1100	0.3166	1.159	449.0	141.8	71.5	195	0.728
1200	0.2902	1 175	473.0	162.0	763	224	0 728
1300	0.2679	1 189	496.0	185 1	82	224	0.720
1400	0.2488	1.207	530	213	01	303	0.719
1500	0.2322	1.230	557	240	100	350	0.705
1600	0.2177	1.248	584	268	106	390	0.688
1700	0.2049	1.267	611	298	113	435	0.685
1800	0.1935	1.286	637	329	120	482	0.683
1900	0.1833	1.307	663	362	128	534	0.005
2000	0.1741	1.337	689	396	137	589	0.672
2100	0.1658	1.372	715	431	147	646	0.667
2200	0.1582	1.417	740	468	160	714	0.655
2300	0.1513	1.478	766	506	175	783	0.635
2400	0 1448	1 558	792	547	196	860	0.630
2500	0.1389	1.665	818	589	222	960	0.630
3000	0.1135	2 726	955	841	486	1570	0.015

 TABLE A.4
 Thermophysical Properties

 of Gases at Atmospheric Pressure^a

L'ABLE A.	o Thern	lophysic	al Prope	crues of 5	aturate	d wate	r			3					
Tempera-	s	Spec Volu (m ³ /l	ific me kg)	Heat of Vapor- ization,	Spec Hei (kJ/kg	ific at · K)	Visc (N··	osity s/m ²)	The Condi (W/r	rmal uctivity n · K)	Pra Nun	ndtl aber	Surface Tension,	Expansion Coeffi- cient, R . 106	Temper-
ture, T (K)	Pressure, $P (bars)^b$	$v_f \cdot 10^3$	Us	hfg (kJ/kg)	$c_{p,f}$	cpg	$\mu_f\cdot 10^6$	$\mu_g\cdot 10^6$	$k_f \cdot 10^3$	$k_g \cdot 10^3$	Pr_f	Pr_g	(N/m)	$p_{\mathrm{K}^{-1}}^{\mathrm{p}_{\mathrm{K}^{-1}}}$	$T(\mathbf{K})$
273.15	0.00611	1.000	206.3	2502	4.217	1.854	1750	8.02	569	18.2	12.99	0.815	75.5	-68.05	273.15
275	0.00697	1.000	181.7	2497	4.211	1.855	1652	8.09	574	18.3	12.22	0.817	75.3	-32.74	275
280	06600.0	1.000	130.4	2485	4.198	1.858	1422	8.29	582	18.6	10.26	0.825	74.8	46.04	280
285	0.01387	1.000	99.4	2473	4.189	1.861	1225	8.49	590	18.9	8.81	0.833	74.3	114.1	285
290	0.01917	1.001	69.7	2461	4.184	1.864	1080	8.69	598	19.3	7.56	0.841	73.7	174.0	290
205	0.07617	1 002	51.94	2449	4.181	1.868	959	8.89	606	19.5	6.62	0.849	72.7	227.5	295
300	0.03531	1.003	39.13	2438	4.179	1.872	855	60.6	613	19.6	5.83	0.857	71.7	276.1	300
305	0.04712	1.005	29.74	2426	4.178	1.877	769	9.29	620	20.1	5.20	0.865	70.9	320.6	305
310	0.06221	1.007	22.93	2414	4.178	1.882	695	9.49	628	20.4	4.62	0.873	70.0	361.9	310
315	0.08132	1.009	17.82	2402	4.179	1.888	631	9.69	634	20.7	4.16	0.883	69.2	400.4	315
								00.0		0.10		1000	6 07	L 76V	062
320	0.1053	110.1	13.98	72390	4.180	C68.1	110	9.89	040	0.12	11.0	0.074	C.00	1.004	070
325	0.1351	1.013	11.06	2378	4.182	1.903	528	10.09	645	21.3	3.42	0.901	67.5	471.2	325
330	0.1719	1.016	8.82	2366	4.184	1.911	489	10.29	650	21.7	3.15	0.908	66.6	504.0	330
335	0.2167	1.018	7.09	2354	4.186	1.920	453	10.49	656	22.0	2.88	0.916	65.8	535.5	335
340	0.2713	1.021	5.74	2342	4.188	1.930	420	10.69	660	22.3	2.66	0.925	64.9	566.0	340
345	0 3377	1 074	4 683	6626	4 191	1.941	389	10.89	668	22.6	2.45	0.933	64.1	595.4	345
350	0.4163	1.027	3.846	2317	4.195	1.954	365	11.09	668	23.0	2.29	0.942	63.2	624.2	350
355	0.5100	1.030	3.180	2304	4.199	1.968	343	11.29	671	23.3	2.14	0.951	62.3	652.3	355
360	0.6209	1.034	2.645	2291	4.203	1.983	324	11.49	674	23.7	2.02	0.960	61.4	6.7.9	360
365	0.7514	1.038	2.212	2278	4.209	1.999	306	11.69	677	24.1	1.91	0.969	60.5	707.1	365
370	0.9040	1.041	1.861	2265	4.214	2.017	289	11.89	679	24.5	1.80	0.978	59.5	728.7	370
373.15	1.0133	1.044	1.679	2257	4.217	2.029	279	12.02	680	24.8	1.76	0.984	58.9	750.1	373.15
375	1.0815	1.045	1.574	2252	4.220	2.036	274	12.09	681	24.9	1.70	0.987	58.6	761	375
380	1.2869	1.049	1.337	2239	4.226	2.057	260	12.29	683	25.4	1.61	0.999	57.6	788	380
385	1.5233	1.053	1.142	2225	4.232	2.080	248	12.49	685	25.8	1.53	1.004	56.6	814	385

TABLE A.6 Thermophysical Properties of Saturated Water^a

390	1.794	1.058	0.980	2212	4.239	2.104	237	12.69	686	26.3	1.47	1.013	55.6	841	390	
400	2.455	1.067	0.731	2183	4.256	2.158	217	13.05	688	27.2	1.34	1.033	53.6	896	400	
410	3.302	1.077	0.553	2153	4.278	2.221	200	13.42	688	28.2	1.24	1.054	51.5	952	410	
420	4.370	1.088	0.425	2123	4.302	2.291	185	13.79	688	29.8	1.16	1.075	49.4	1010	420	
430	5.699	1.099	0.331	2091	4.331	2.369	173	14.14	685	30.4	1.09	1.10	47.2		430	
440	7.333	1.110	0.261	2059	4.36	2.46	162	14.50	682	31.7	1.04	1.12	45.1		440	
450	9.319	1.123	0.208	2024	4.40	2.56	152	14.85	678	33.1	0.99	1.14	42.9		450	
460	11.71	1.137	0.167	1989	4.44	2.68	143	15.19	673	34.6	0.95	1.17	40.7		460	
470	14.55	1.152	0.136	1951	4.48	2.79	136	15.54	667	36.3	0.92	1.20	38.5		470	
480	17.90	1.167	0.111	1912	4.53	2.94	129	15.88	660	38.1	0.89	1.23	36.2		480	
490	21.83	1.184	0.0922	1870	4.59	3.10	124	16.23	651	40.1	0.87	1.25	33.9	I	490	
500	26.40	1.203	0.0766	1825	4.66	3.27	118	16.59	642	42.3	0.86	1.28	31.6	Ι	500	
510	31.66	1.222	0.0631	1779	4.74	3.47	113	16.95	631	44.7	0.85	1.31	29.3	Ι	510	
520	37.70	1.244	0.0525	1730	4.84	3.70	108	17.33	621	47.5	0.84	1.35	26.9	[520	
530	44.58	1.268	0.0445	1679	4.95	3.96	104	17.72	608	50.6	0.85	1.39	24.5		530	
540	52.38	1.294	0.0375	1622	5.08	4.27	101	18.1	594	54.0	0.86	1.43	22.1	I	540	
550	61.19	1.323	0.0317	1564	5.24	4.64	76	18.6	580	58.3	0.87	1.47	19.7	Ι	550	
560	71.08	1.355	0.0269	1499	5.43	5.09	94	19.1	563	63.7	06.0	1.52	17.3	Ι	560	
570	82.16	1.392	0.0228	1429	5.68	5.67	91	19.7	548	76.7	0.94	1.59	15.0	1	570	
580	94.51	1.433	0.0193	1353	6.00	6.40	88	20.4	528	76:7	0.99	1.68	12.8	Ι	580	
590	108.3	1.482	0.0163	1274	6.41	7.35	84	21.5	513	84.1	1.05	1.84	10.5		590	
600	123.5	1.541	0.0137	1176	7.00	8.75	81	22.7	497	92.9	1.14	2.15	8.4	Ι	600	
610	137.3	1.612	0.0115	1068	7.85	11.1	LL	24.1	467	103	1.30	2.60	6.3	J	610	
620	159.1	1.705	0.0094	941	9.35	15.4	72	25.9	444	114	1.52	3.46	4.5	I	620	
625	169.1	1.778	0.0085	858	10.6	18.3	70	27.0	430	121	1.65	4.20	3.5	I	625	
630	179.7	1.856	0.0075	781	12.6	22.1	67	28.0	412	130	2.0	4.8	2.6	I	630	
635	6.061	1.935	0.0066	683	16.4	27.6	64	30.0	392	141	2.7	6.0	1.5	I	635	
640	202.7	2.075	0.0057	560	26	42	59	32.0	367	155	4.2	9.6	0.8	I	640	
645	215.2	2.351	0.0045	361	06	I	54	37.0	331	178	12	26	0.1	I	645	
647.3 ^c	221.2	3.170	0.0032	0	8	8	45	45.0	238	238	8	8	0.0		647.3 ^c	
^{<i>a</i>} Adapted fr ^{<i>b</i>} I bar = 10 ^{<i>c</i>} Critical ten	om Reference 15 5 N/m ² . nperature.	ċ														