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Modeling, Design and Characterization of CMOS Compatible 

Plasmonically Enhanced  Avalanche Photodiodes for Smart Lighting

� Modeling and design of CMOS compatible 
linear mode avalanche photodiodes (APDs). 

� Inclusion of the plasmonic effect to the APD 
structure to be used in smart-lighting systems.

� Expected advantages of plasmonic detectors:

- Simplicity of design 
- High sensitivity

- Low power consumption
- Low cost

� Applications:  - Color detection 

- Angular sensitivity
- High resolution color filtering

Project Goals

Project Code (S2.1.4 )

Future Work

Near term milestones:

� Characterization of the developed CMOS 
APDs is completed with Professor 

Payman’s team.

� Modeling and initial design of 

plasmonically enhanced CMOS  APDs 
have been completed.

� Characterization of  the plasmonic device  

structure in collaboration  with Prof. 

Brueck’s and Prof. Payman’s team is 
underway.

� Optimization of the APD design and 

operational gain for improved sensitivity 

and equalization of responsivity (across 
wavelength) is underway.

Long term milestones:

� Plasmonic spectral selectivity  with 
resolutions of 25 nm and 10 degree

� Improve λ selectivity

� Improve directionality

Research Results

APD with high breakdown voltage:
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CMOS compatible PN junction plasmonic  APD
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� Aperture of the 
plasmonic 

structure atop 
the silicon 

detector.

Design:

Fig. 1. Experimental dark current characteristics of the CMOS APD.

Fig. 2. Experimental spectral response of APD for different  voltages.
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Project’s ERC Role

Relevant Research

Societal Benefits
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� Improve directionality

� Improve dynamic range

� Develop wide dynamic range sensor

� Develop plasmonic-color sensor

Interactions with other ERC projects
� S2.1.1 Light Sensors with Integrated 

Communications
� S2.1.5 Integrated Plasmonic Photodetector 

Arrays

� T1.1.1 Distributed Light Field Control Systems
� T1.2.5 Improving Building Energy Efficiency 

through VLC Control Interface

� C. Qin, W. Danial, D. Kirsty, D. Tim, S. Collins,  Cumming, R. S. 
David, “CMOS Photodetectors Integrated With Plasmonic Color 
Filters,” IEEE Photon. Technol. Lett., vol. 24, no. 3, pp. 197-
199, 2012.

� M. Gu, P. Bai, H. S.  Chu, Er-P Li, “Design of Subwavelength 
CMOS Compatible Plasmonic Photodetector for Nano-
Electronic-Photonic Integrated Circuits,” IEEE Photon. Technol. 
Lett., vol. 24, no. 6, pp. 515-517, Mar., 2012.

� S. Alkis, F. B. Oruç, B. Ortaç, A. C. Koşger, A. K. Okyay, “A 

plasmonic enhanced photodetector based on silicon 
nanocrystals obtained through laser ablation,” J. Opt., v. 14, no. 
12, pp. 125001-5, Oct. 2012.
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Products & Outcomes Requirements

CMOS compatible PN junction plasmonic  APD

APD with low  breakdown voltage:

Fig. 7. Experimental dark current characteristics of the CMOS APD.

Fig. 8. Experimental spectral response of APD for different  reverse  bias voltages.

Fig. 3.  Calculated electric field profile as 

a function of depletion width for Si.

Fig. 5. Calculated mean gain (using the 

dead-space multiplication theory) as a 

function of the applied reverse bias voltage.

Fig. 6. Calculated excess noise factor 

(using the dead-space multiplication 

theory) as a function of mean gain for Si.

Fig. 4. Calculated ionization coefficients α 

and β for Si as a function of depletion width.

� Energy Sustainability

� Low power consumption

� Visible light communication

� Spectral calibration

� Wavelength selectivity 
� Cost effectiveness

� Advanced time of flight

� Time-correlated single-photon-

counting

� Increased Productivity

� High sensitivity
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Fig. 9. Calculated light transmission 

and absorption profile for 

formalized incident light intensity 

as a function of wavelength.              
[ Courtesy to Alexander Neumann]


