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Societal Benefits

Detectors for Smart Lighting Systems

� Modeling, design and characterization of 

plasmonic detectors developed in 

collaboration with Boston University.

� Design and modeling of CMOS 

compatible avalanche photodiodes 

(APDs) and integrated plasmonic 

detectors for smart-lighting systems.

� Expected advantages of plasmonic and 

APD detectors:

- Simple spectral filtering   

- Simplicity of design 
- High sensitivity

- Low power consumption

- Low cost

� Applications: Light intensity measurement, 
spectral and directional sensing, 

calibration, and control for smart lighting.

Project Overview

Project Code:  S2.1.4

� Surface plasmons (SPs) result from the 

interaction between light waves and 

oscillating free electrons on the metal 
surface. 

� Characterization results:

� Modeling

� Commercially available Sentaurus technology-

computer-aided-design (TCAD) tool was used on 
the APD structure to:

- simulate I-V characteristics

- simulate band profile and electric field distribution 
along the length of the junction. 

� Dead-space multiplication theory (DMST) is used 

to predict avalanche gain, excess noise factor, 

and breakdown voltage. 

� Characterization of the developed   

plasmonic detectors from BU (completed).

� Design and simulation of the plasmonically 

enhanced  CMOS  APDs.

� Modeling, design and characterization of 

different plasmonic PD structures (in 
collaboration  with Prof. Brueck’s team).

� Optimization of avalanche gain of CMOS-

compatible APDs to improve high 

sensitivity and unification of responsively 
across the wavelength 500 nm – 1000 nm 

range.

• Energy sustainability

• Low power consumption

• Increased productivity

• High sensitivity
Multiplication layer

Proposed Structures
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surface. 

� The efficient control of photon-plasmon-

photon conversion at subwavelength 

scale gives rise to high-resolution color 
filtering within the visible electromagnetic 

spectrum. 

� Rigorous coupled-wave analysis (RCWA) code 
was undertaken to analyze integrated plasmonic 

pn-junction detectors. Predictions include:

- plasmonic response

- light transmission spectrum

- electromagnetic field distribution 

- optical properties of the plasmonic nanostructures.

• Visible light communication

• Spectral calibration

• Wavelength selectivity 
• Cost effectiveness

• Potential for time–correlated 

single-photon-counting for 

ultrasensitive sensing.
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� Plasmonically enhanced CMOS 

compatible APD device structure.

� Plasmonic structure atop the silicon 

detector.

Basics of surface plasmon polaritons [1]

Injected electron First impact ionization

W x

de

p n

qE

E
d ie

e =

qE

E
d ih

h =

de de
dh dh

Eie and Eih are the average 

ionization threshold energies

Avalanche multiplication: dead space model [2, 3]
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Gold grating atop glass substrate [4] 

• Example: 

Application of 

RCWA to simple 
grating structure.

• UNM code is in 

good agreement 

with published 
results [4].

• Application to 

plasmonic PD is 

underway.
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