Physics 306L: LabView Assignment 8
Audio Spectrum Analyzer

This assignment uses LabView to access the sound card on your computer to make a real-
time display of the stereo signals produced by an audio (.wav) file. The audio file is
opened, parsed inside a For Loop, and then closed. Resource management is important to
ensure a smooth playback.

The VI is built around a state-machine, which was the subject of Assignment 7. Use the
design template for a standard state-machine and configure its type-def constant for four
states: Setup, Play, Open File, and Stop. On the Front Panel, place four waveform
graphs: two graphs will display the time output for each channel and two will display
their Fourier transforms (spectra). Also place a numeric control (I32 representation) for
the Samples/Channel and a Boolean controls to abort playing of the current .wav file as
shown below.

Samples/ Channel 1 Spectrum 1
Channel

= | 2000 ‘

El aeort

Amplitude
Amplitude (dB)

| I
10 100 IUUU IUUUU 100000

Time

Amplitude
Armplitude

| 1
100 1000 10000 100000

Time

Best playback is obtained by eliminating the Wait function inside the While Loop. The
CPU can then devote all its available resources to audio operations.

Code the Setup state first. Select Graphics & Sound: Sound: Output: Sound Output
Configure.vi and place it in this state. Wire the Samples/Channel control (I32) to the
number of samples/ch terminal. Create a constant on the sample mode terminal and

select “Continuous Samples”. Create a constant on the sound format input terminal
and set the cluster values as follows: sample rate = 44100, number of channels = 2, and
bits per sample = 16. These setting should work for modern sound cards, but you may
have to experiment depending on the hardware you have on your computer. The
configure operation will create a Task ID that is needed in the Play state. Add a shift-
register on the While Loop perimeter and connect the Task ID to it.

In this Setup state, the input .wav file is specified. From the File I/O palette select
Open/Create/Replace File and set operation to open. Add a text string to the prompt
terminal instructing the user to browse for a .wav file to play. The refnum out data
must be converted to a file path; use the Refnum to Path function located in the Advanced
File Functions sub-palette for this. In the Sound palette, locate Files: Info and place it in
the Setup state, then wire the file path to its path input terminal. We are interested in
the total number of samples in the selected .wav file. Divide the total number of
samples/ch output by the Samples/Channel input control. This sets the number of times
the For Loop in the Play state will run. Round this data to an integer and convert it to
132 representation. Make this data available in the Play state by placing it in a third
shift-register.

The file path must be converted to a sound file refnum. Make this conversion with Sound
File Open.vi and pass this refnum into a fourth shift-register. This is a polymorphic VI
that can be configured for Read or Write. Use the default Read operation. You should
now have four shift-registers on your state-machine. It's a good idea to use the text tool
to label the individual shift-registers outside the While Loop so you know what data they
contain.

Another way to make data available in other states is with a Local Variable. In the Block
Diagram, right-click on the Samples/Channel control and create a Local Variable. Place
it outside the Case Structure. It will be wired in the Play state.

It is important to enforce the execution order to first configure the sound card, then open
the .wav file, read its size, and generate a sound file refnum. Use the error cluster for
this. The user has the option of pressing the Cancel button if prompted to open a .wav
file. If this happens, the VI should be stopped. The cancelled terminal of the open file
operation will produce a Boolean TRUE output. This flag is used to take the program to
the Stop state. If the cancelled output is instead FALSE (this means a .wav file has
been specified and opened) the next state should be Play. If an error occurs, the VI
should also be stopped. Add some code (you will need an OR gate) to make this selection.
(Note: The error cluster does not have to be unbundled to access the status Boolean. It
can be wired directly to any Boolean terminal.) Pass the error cluster to other states with
a fifth shift-register on the While Loop.

Part of the code for the Setup state should look similar to this:

Samples/
Channel
" Select .wav
file to open
rCcuntmuDus Samples "’I—|
5= e 0%} 7
44100 els D o
Read =
|4> DEEH "l

Now go to the Play state and insert a For Loop. Wire the Count terminal to the value
calculated in the Setup state; this number is available on the corresponding shift-register.
Right-click on the edge of the For Loop and select “Conditional Terminal”. Wire the Abort
button Boolean control to it. Notice how the Count terminal changes to indicate the
presence of the conditional stop.

Inside the For Loop, the .wav file data will be parsed, played, and analyzed. In the Sound
sub-palette, select the Sound File Read.vi and place it in the For Loop. (Note: This is not
the same VI used in the setup state.) Using the appropriate shift-register, wire the
refnum data from the opened .wav file to the sound file refnum input terminal. Create
a constant on position mode and select “Absolute”.

Find the Local Variable for Samples/Channel created in the Setup state. Right-click and
select “Change to Read”. Place it outside the For Loop and wire it to the number of
samples/ch terminal. The Local Variable makes an explicit connection to the control
terminal in the Setup state and reads it.

Add a shift-register to the For Loop and use it to increment the read position on the .wav
file for each iteration of the For Loop. Simply sum the shift-register by the constant value
of the Samples/Channel Local Variable with each iteration. Wire the incremented count
to the position offset terminal of the read function. Don't forget to initialize the shift-
register to 0 as an 132 data type.

The goal is to simultaneously play the file through the sound card and display the
waveforms for each channel in real time. The parsed sound data is present on the data
terminal. There are up to two channels of data, so the output is a 2-D array. To play the
parsed data, place Sound Output Write.vi in the For Loop and wire the 2-D data array to
the data terminal. The task ID is on the corresponding shift-register from the Setup
state. To prevent errors on subsequent plays, the sound buffer must be cleared when the

For Loop finishes. Place the Sound Output Clear.vi outside the For Loop; wire task ID
out from Sound Output Write to the task ID input terminal on the clear function. You
will need to disable indexing on the For Loop tunnel. In a similar manner, close the
sound file using the Sound File Close.vi placed outside the For Loop. Connect the sound
file refnum to its input terminal. The error cluster can be connected between the read,
write, and clear operations to help troubleshoot potential problems.

The waveform data from the two channels is in a 2-D array; each channel should be
displayed separately inside the For Loop. To separate them, use the Array: Index Array
function, one for each channel. Wire the data output of the Sound File Read in parallel
to two copies of Index Array. The 2-D array data is wired to each n-dimensional array
input terminal. Wire a constant 0 on one index input terminal and 1 on the second
index input; see below:

|sc-ur1d file refnum|

S)
iAhsnIute 'I — mﬁ %

Task ID

T

L]
e
[m]

E_.
.

L]
W
[m}

The two output waveforms can now be connected to the corresponding waveform graphs
on the Front Panel.

The Fourier power spectra of both waveforms is easily obtained with a built-in LabView
function. Go to Waveform: Analog Wfm: Measurements: FFT Power Spectrum & PSD
and place two copies inside the For Loop. Wire one waveform to the time signal input
terminal of each. Connect the Power Spectrum/PSD output terminal to the
corresponding waveform graphs and set the db On (F) terminals for both to TRUE. This
will display the y-axis amplitude as a dB log-scale.

When it finishes, the Play state should transition to the Open File state unless an error
occurs. Use the Select function to monitor the status of the error cluster and transition to
the Stop case if necessary.

Next configure the Open File state with a Two Button Dialog. Wire the message with the
string “Open another .wav file?” or something similar. Wire a string to the Cancel
terminal that says Stop. The Boolean output of this dialog function indicates which
button was pressed. If TRUE, transition to the Setup case. If FALSE, transition to the
Stop case.

The Stop state is the only place where the VI can be stopped. Pass a Boolean constant
out of it to the conditional terminal of the main While Loop. The other 3 states should
have opposite logic. The state that exits the Stop case is meaningless (it will never be
reached), but it can be wired to Stop.

If the other states produce an error while one or more resources are open, simply stopping
the While Loop will not close them. Leaving hardware in an uncertain state is not good
programming practice. This can be addressed as follows: Duplicate the resource close
operations from the Play state and place them inside a Case Structure in the Stop state.
The error cluster and refnums are accessed at their corresponding shift-registers; the
error cluster is wired to the selection terminal as shown:

L |: Error Tt
I .
& X
A ¢

If the error status is TRUE, these resources will be forced closed before the VI stops. The
error cluster shift-register output terminal should be read with a Simple Error Handler
as usual.

The VI will not function if all tunnels exiting the case structure are unwired. If you are
sure no data will be needed in the shift-registers in subsequent frames, you can right-
click on the tunnel and select “Use Default if Unwired”. It's usually safer, however, to
explicitly wire all tunnels leaving the case structure. This decision is up to the
programmer.

Test your VI with sample .wav files on the class website. It may be useful to display the
frequency axes with a log scale and limit the range to two decades: 100—10 kHz. You
should experiment with the waveform Samples/Channel size. Ifit's too small the
playback will sound choppy. Ifit's too long, it will be difficult to see meaningful waveform
data, especially if the music transitions rapidly. This will depend on the hardware of the
machine on which the VI is run.

