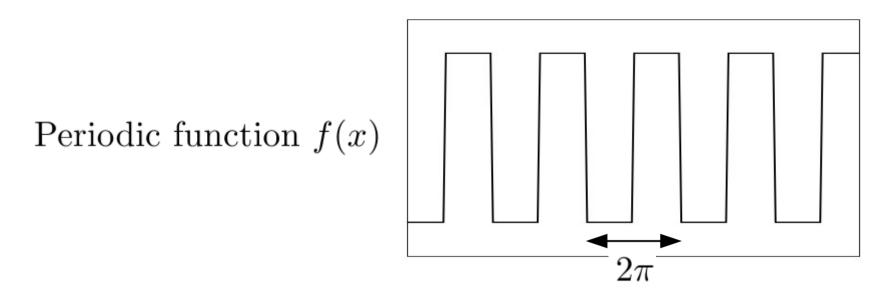
Fourier Analysis

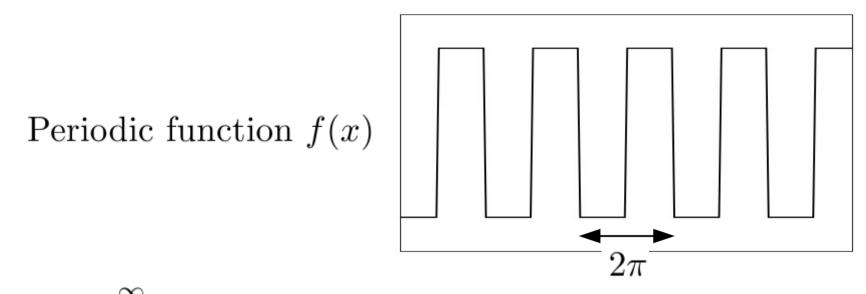
Joseph Fourier 1768-1830

Fourier Series



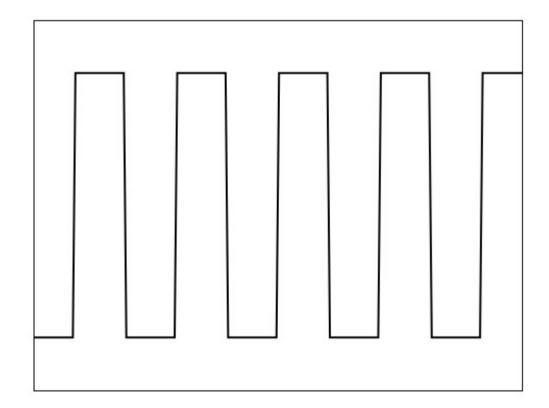
$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos(nx) + b_n \sin(nx) \right]$$
$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) dx \qquad b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(nx) dx$$

Fourier Series

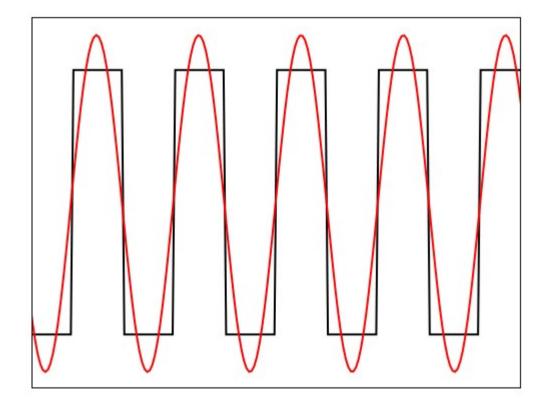


$$f(x) = \sum_{n = -\infty}^{\infty} c_n e^{jnx}$$

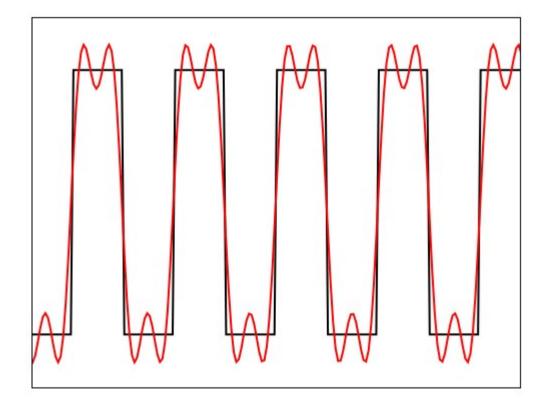
$$c_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-jnx} dx$$



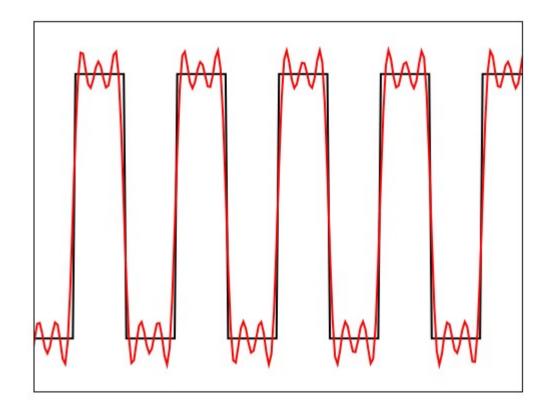
1st order component



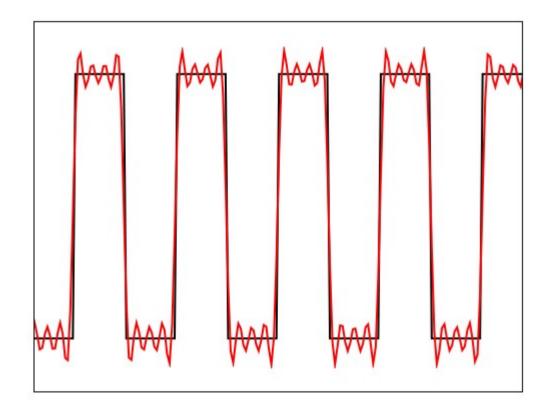
1st + 2nd order components

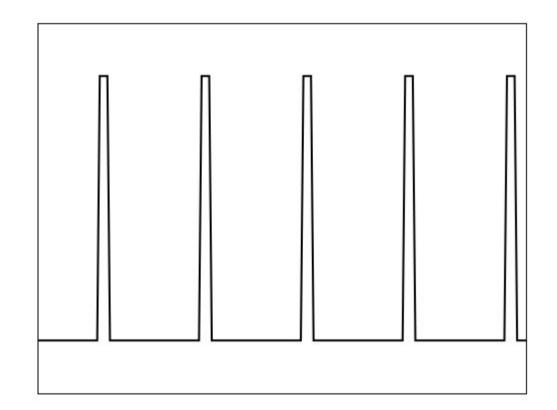


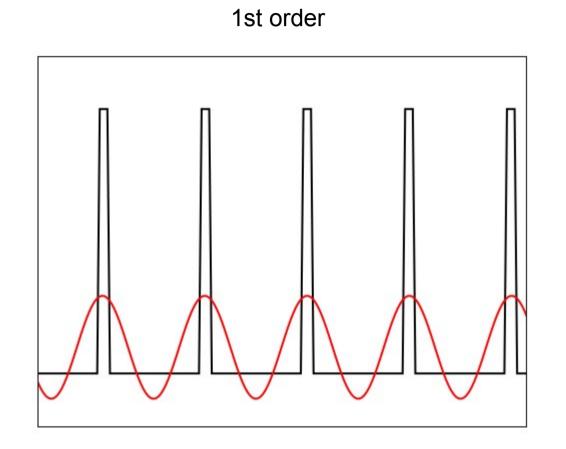
1st + 2nd + 3rd order components

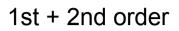


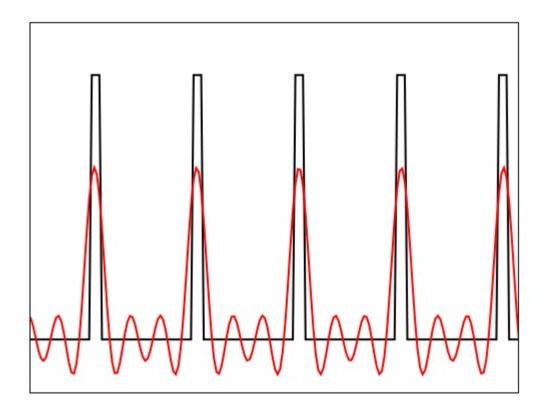
1st + 2nd + 3rd + 4th order components

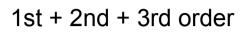


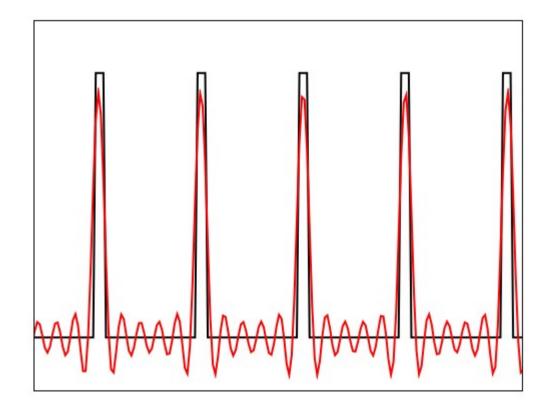




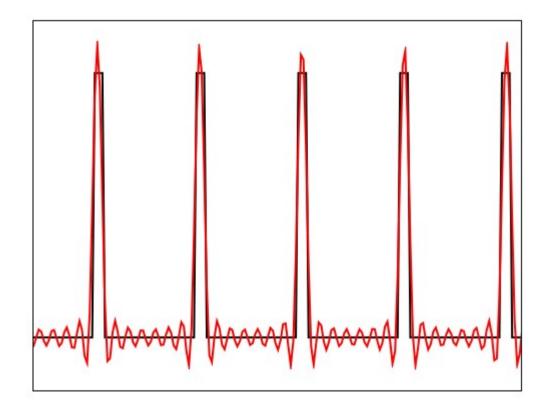






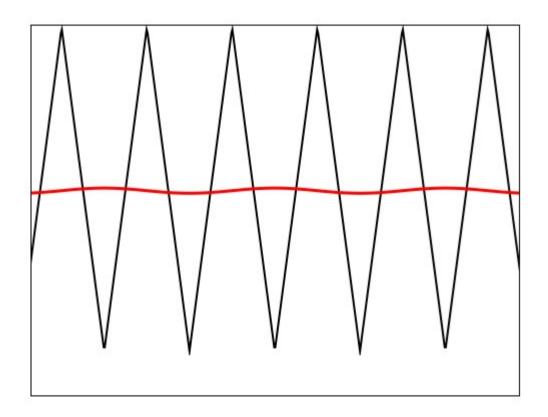


1st + 2nd + 3rd + 4th order components



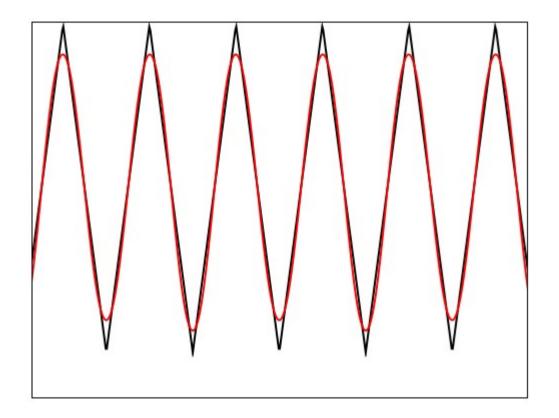
Triangle (Sawtooth) Wave

1st order



Triangle (Sawtooth) Wave

1st + 2nd order



Fourier Series ⇒ Fourier-Transform

$$f(x) = \sum_{n=-\infty}^{\infty} c_n e^{j2\pi nx \frac{1}{T}} \qquad c_n = \frac{1}{T} \int_{-T/2}^{T/2} f(\hat{x}) e^{-j2\pi n\hat{x} \frac{1}{T}} d\hat{x}$$

$$f(x) = \frac{1}{T} \sum_{n=-\infty}^{\infty} e^{j2\pi nx\frac{1}{T}} \left[\int_{-T/2}^{T/2} f(\hat{x}) e^{-j2\pi n\hat{x}\frac{1}{T}} d\hat{x} \right]$$

$$\nu = \frac{n}{T} \qquad f(x) = \int_{-\infty}^{\infty} d\nu \ e^{j2\pi\nu x} \left[\int_{-\infty}^{\infty} f(\hat{x}) e^{-j2\pi\nu \hat{x}} d\hat{x} \right]$$

Fourier-Transform:
$$f(x) = \int_{-\infty}^{\infty} d\nu \ e^{j2\pi\nu x} F(\nu)$$

Fourier-Transform

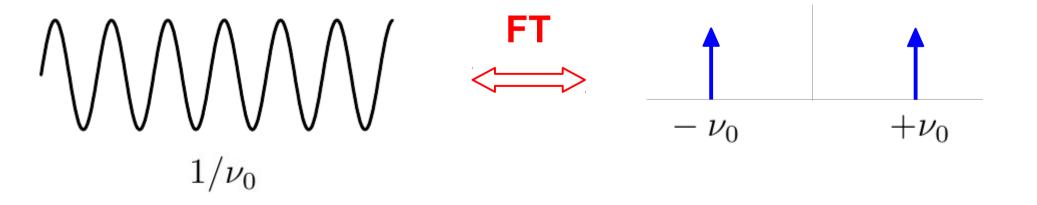
$$f(x) = \int_{-\infty}^{\infty} d\nu \ e^{j2\pi\nu x} F(\nu)$$

$$F(\nu) = \int_{-\infty}^{\infty} f(\hat{x}) e^{-j2\pi\nu\hat{x}} d\hat{x}$$

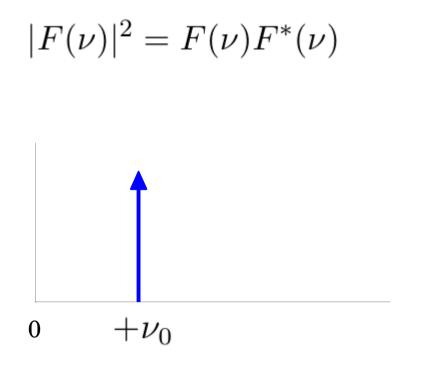
Fourier-Transform

$$f(x) = \int_{-\infty}^{\infty} d\nu \ e^{j2\pi\nu x} F(\nu)$$

$$F(\nu) = \int_{-\infty}^{\infty} f(\hat{x}) e^{-j2\pi\nu\hat{x}} d\hat{x}$$

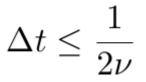


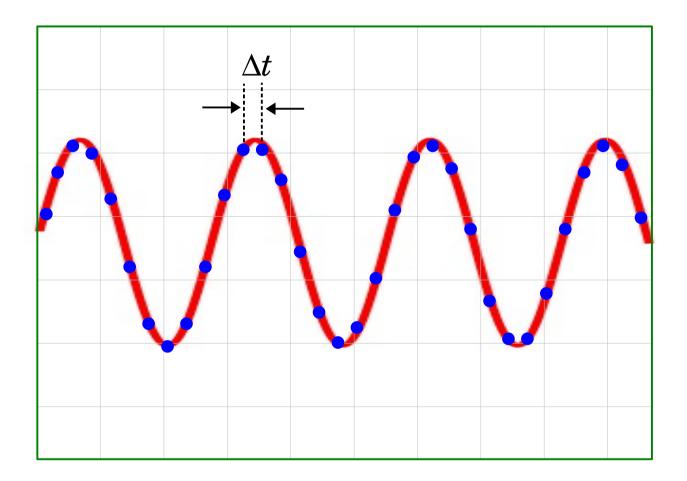
Power Spectrum



Nyquist theorem Sampling theorem

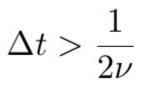
Temporal spacing of signal sampling

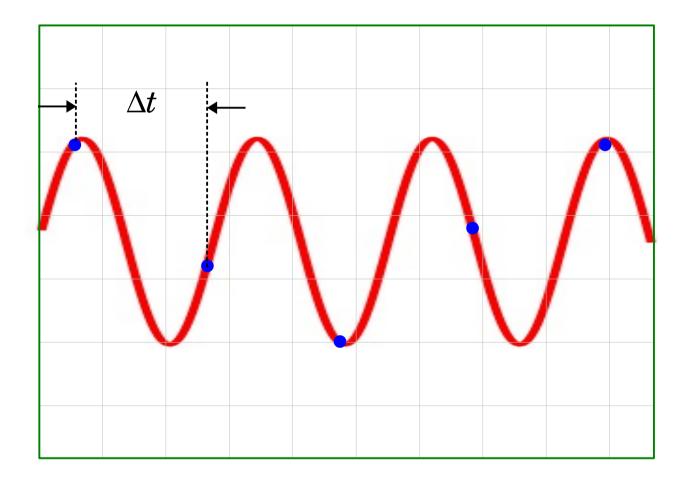


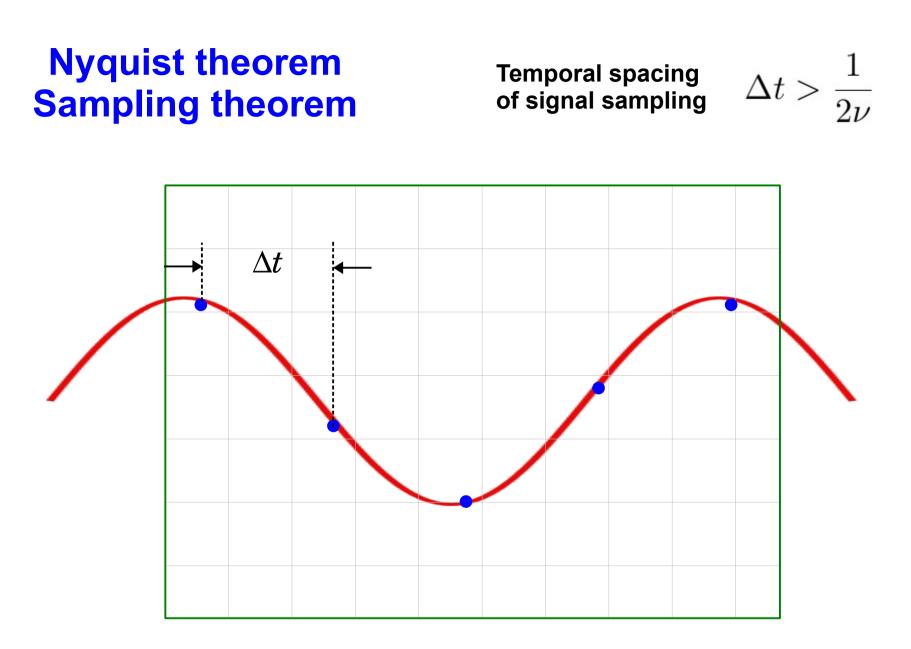


Nyquist theorem Sampling theorem

Temporal spacing of signal sampling

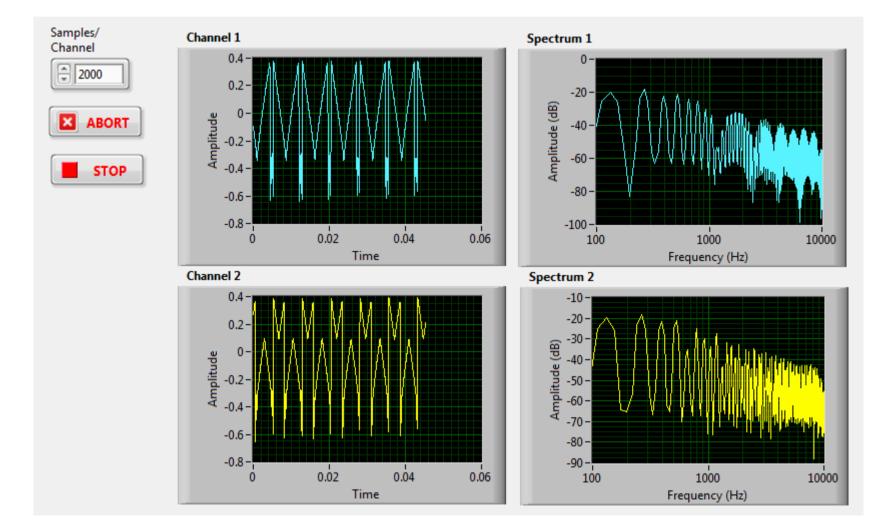






ALIASING

LabVIEW Assignment 8: Audio Spectrum Analyzer



Lab 8: Operational Amplifiers

Often better alternative to simple transistor amplifiers

Stablity – circuits nearly immune to temperature drift

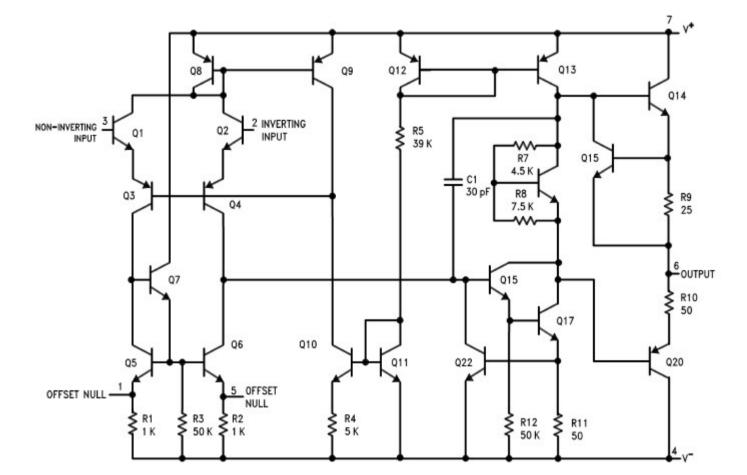
Versatile especially with use of feedback

Electrical implementation of mathematical operations

Individual transistors: highest frequency operation, high power

Op amps packaged as an integrated circuit (IC)

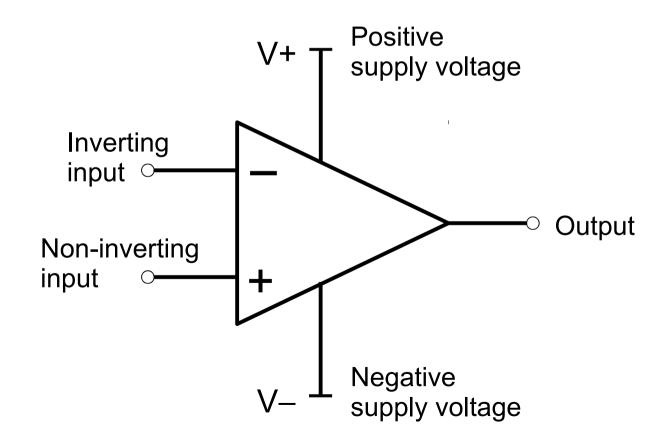
LM741 Operational amplifier



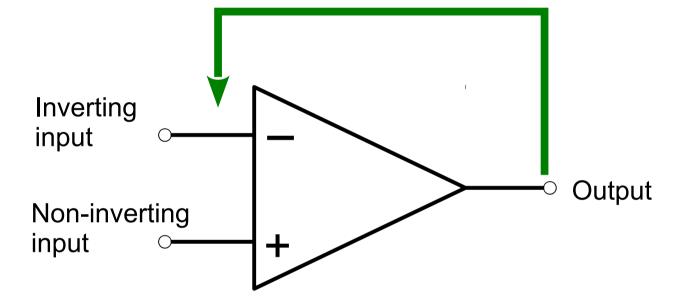
SCHEMATIC DIAGRAM

IDEAL OP-AMP

- * Infinite gain
- * Infinite input impedance/resistance
- * Output current can go to infinity if needed



FEEDBACK: Sending a portion of the output back to the input

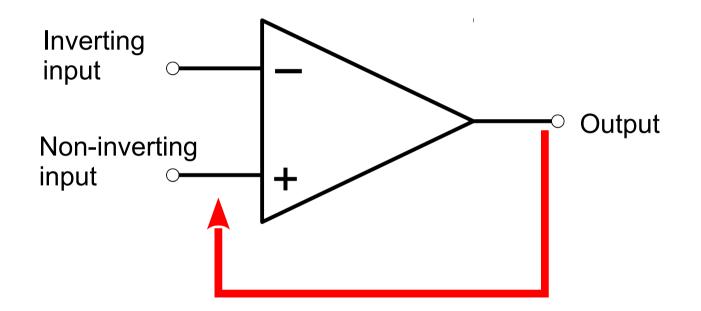


Negative feedback

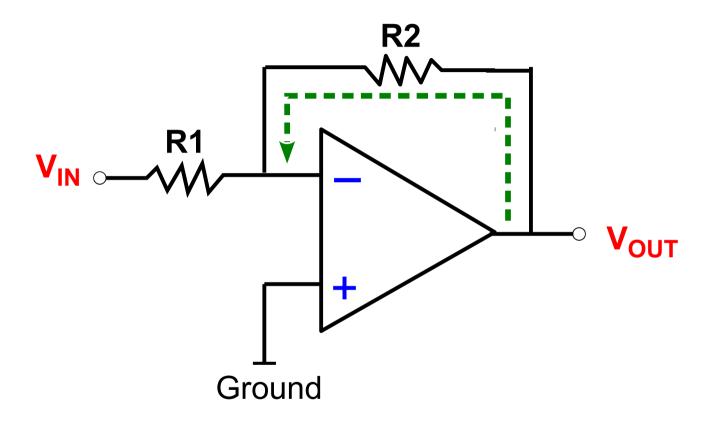
Stabilizes the output of an amplifier

FEEDBACK: Sending a portion of the output back to the input

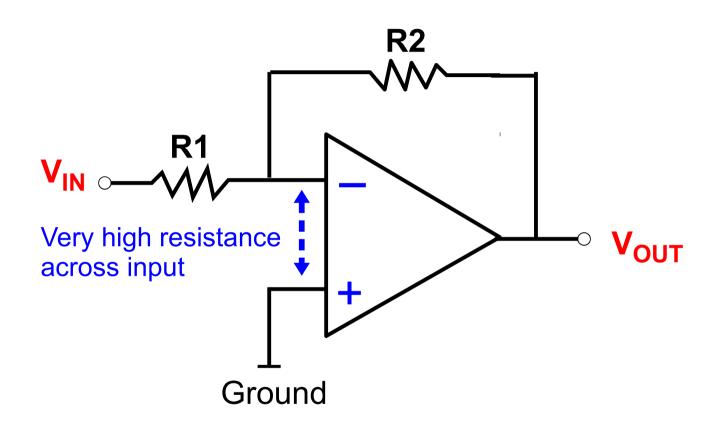
Positive feedback



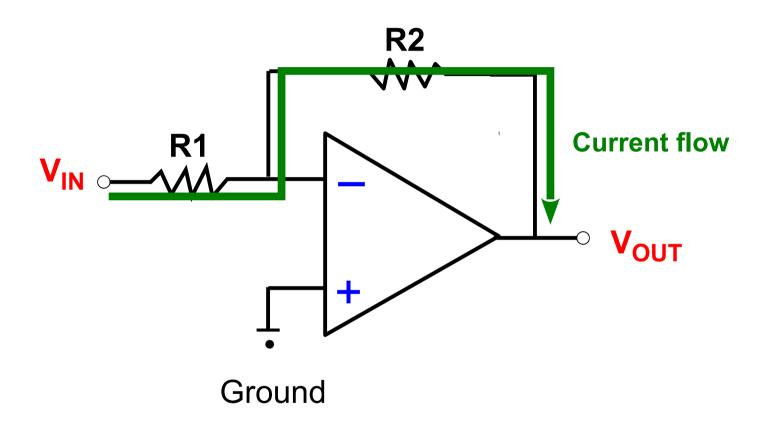
Runaway amplification – Oscillation



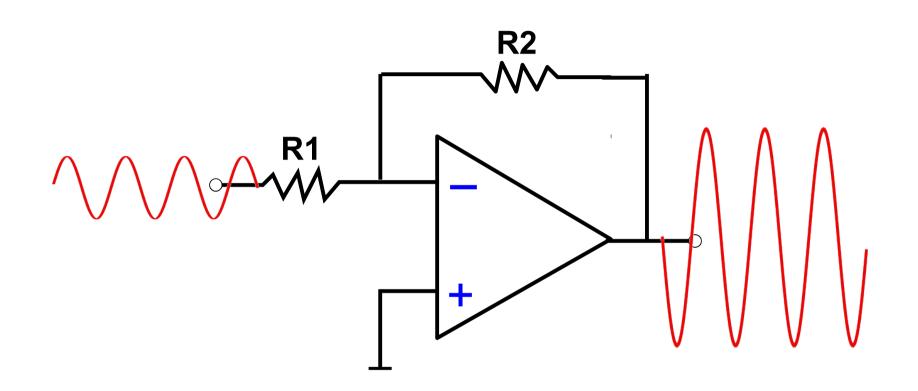
Analysis



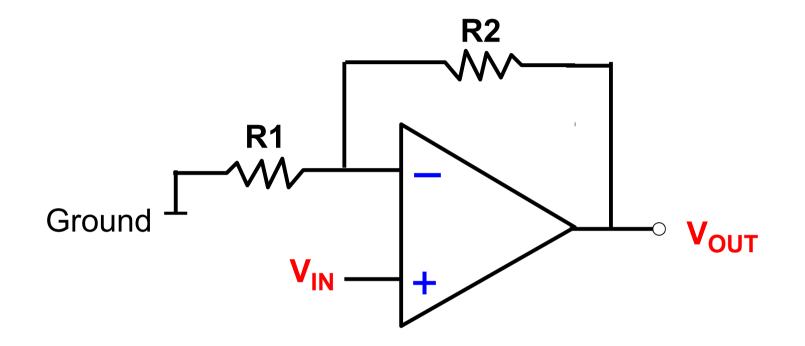
Analysis

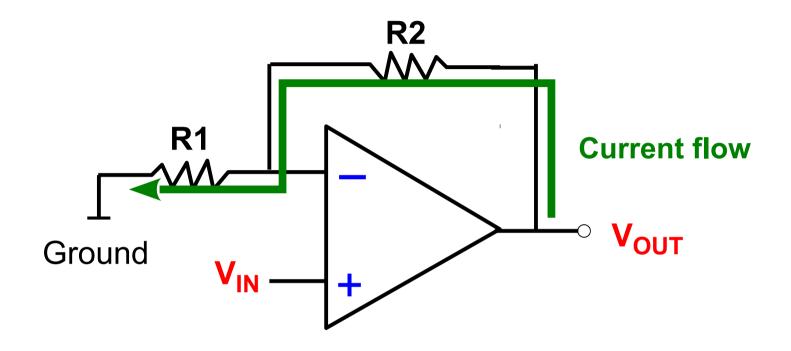


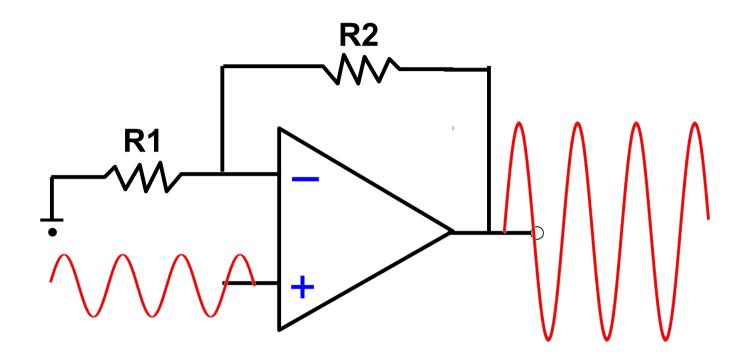
Analysis



Inverting amplifier: $GAIN = -\frac{R2}{R1}$

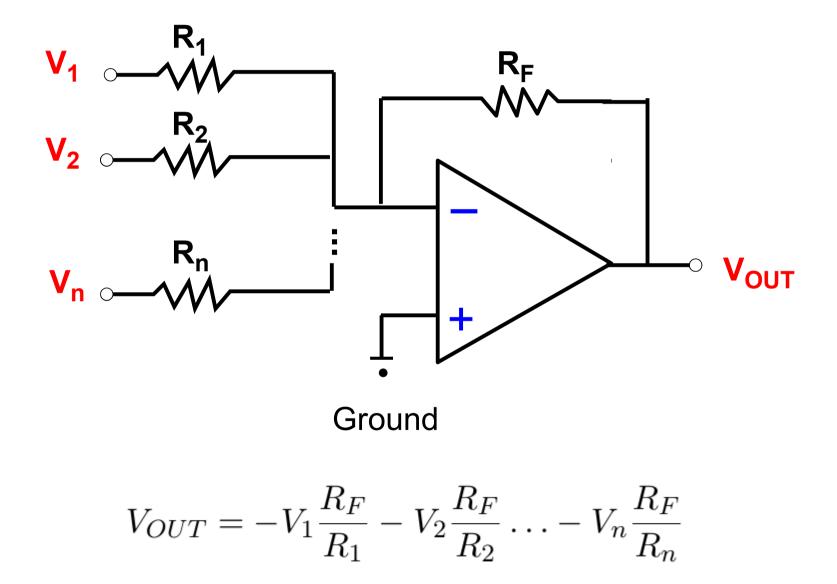




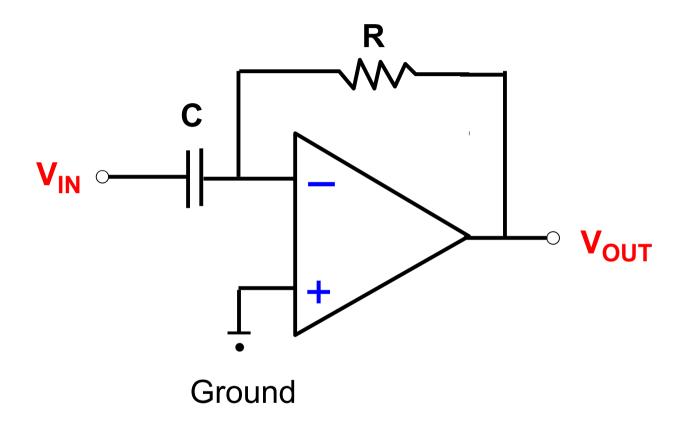


Non-inverting amplifier: $GAIN = 1 + \frac{R2}{R1}$

Summing Amplifier



Differentiating Amplifier



$$V_{OUT} = -RC\frac{dV_{IN}}{dt}$$

Integrating Amplifier

