LECTURE 4: Probability and Statistics (Part 2)

PROBABILITY DISTRIBUTION FUNCTIONS

- GAUSSIAN: Random data, experimental parameters uncertain
- **POISSON:** Number of counts in a specified time interval

• **BINOMIAL:** Small number of possible outcomes (eg. heads or tails)

What is the probability $P_{\rm B}$ of *x* events occurring in *N* trials if the single event probability is *p*?

$$P_B = \frac{N!}{(N-x)! \; x!} \; p^x (1-p)^{N-x}$$

$$P_B = \binom{N}{x} p^x (1-p)^{N-x}$$

PROBABILITY DISTRIBUTION FUNCTIONS

- GAUSSIAN: Random data, experimental parameters uncertain
- **POISSON:** Number of counts in a specified (time) interval
- **BINOMIAL:** Small number of possible outcomes (eg. heads or tails)

POISSON DISTRIBUTION

An approximation to the Binomial distribution

Probability p gets small

Large number trials: N is big

Typically: Counting x events occurring in a time interval

Events individually distinguishable; uncorrelated

Mean rate: $\lambda = Np$

Standard deviation: $\sigma = \sqrt{\lambda}$

$$P_P = \frac{\lambda^x}{x!} e^{-\lambda}$$

Half-life: Multiple years \rightarrow Decay probability *p* very small

Number of nucleii N very large

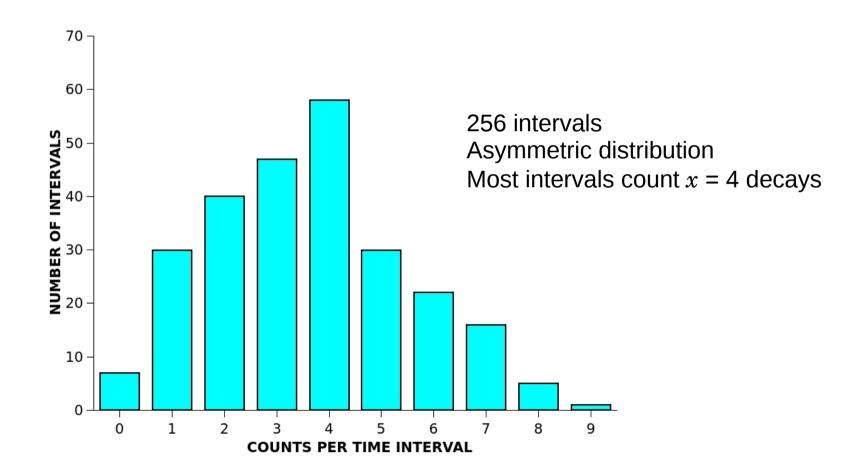
Mean rate: $\lambda = Np$; ...but *N* and *p* are likely unknown!

 $\lambda =$ <u>Total events counted</u> Total observation time

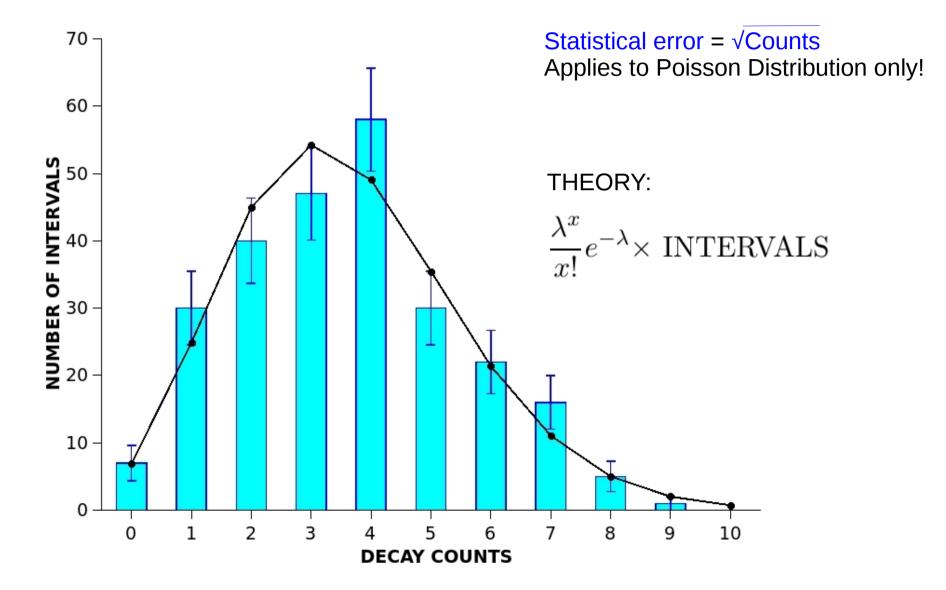
$$P_P = \frac{\lambda^x}{x!} e^{-\lambda}$$

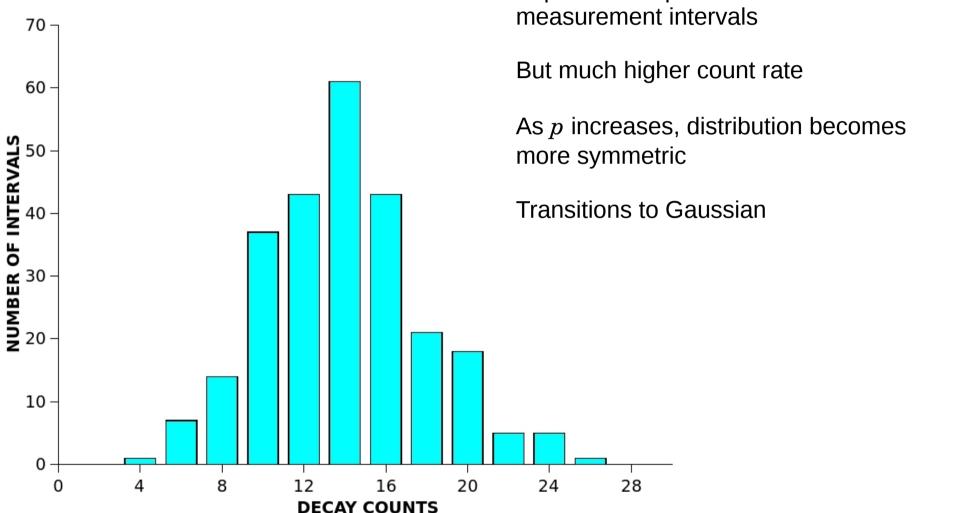
Count number of radioactive decays x in a series of intervals of duration τ

Plot on a histogram:



Comparing experiment with theory



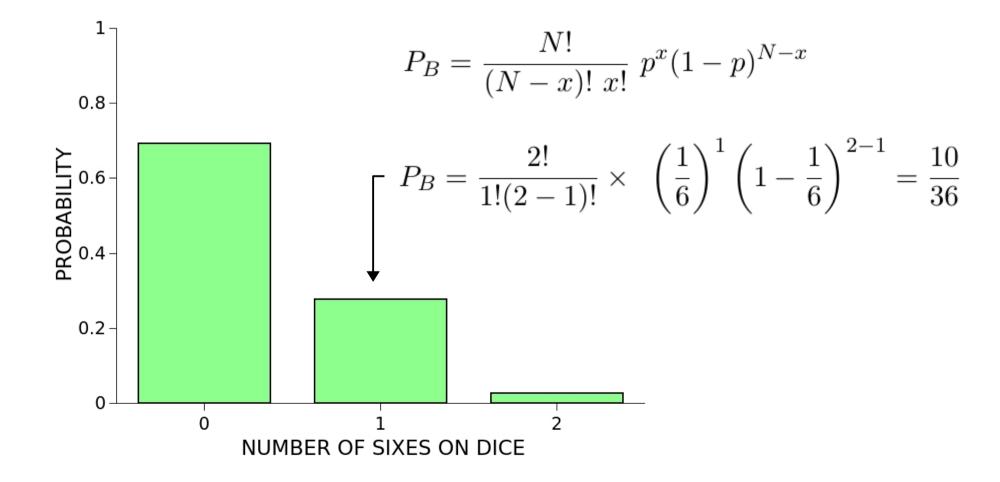


Experiment repeated with same number of measurement intervals

EXAMPLE: Probability of SIX appearing when dice tossed

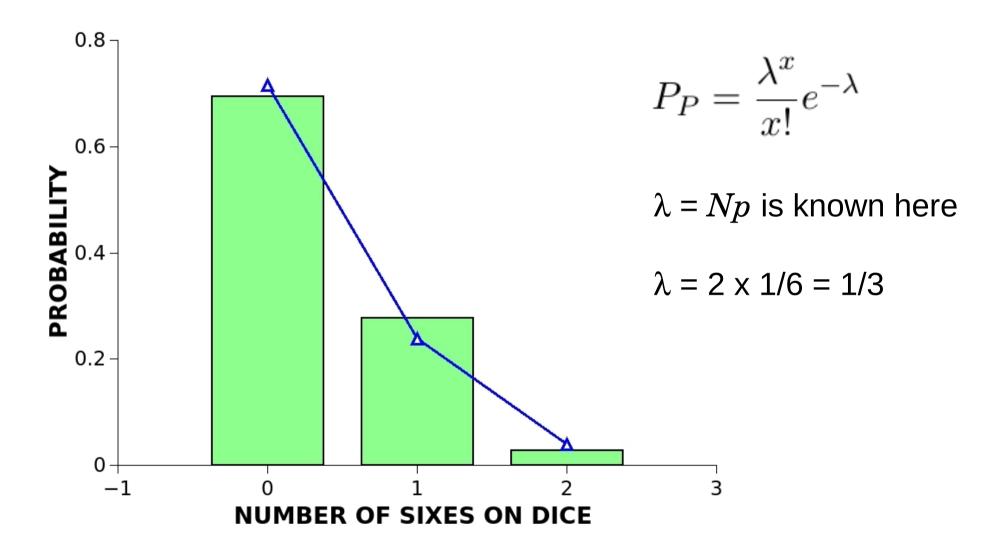
EXAMPLE: Probability of SIX appearing on dice

Exactly described by a Binomial Distribution



Can a Poisson Distribution reasonably describe the dice toss?

Poisson approximates Binomial when p small; N large



PROBABILITY DISTRIBUTION FUNCTIONS

• GAUSSIAN: Random data, experimental parameters uncertain

- **POISSON:** Number of counts in a specified time interval
- **BINOMIAL:** Small number of possible outcomes (eg. heads or tails)

GAUSSIAN DISTRIBUTION aka "The Bell Curve"

An approximation to the Binomial distribution

Number of trials N gets large

Np >> 1

Most experimental distributions are Gaussian

Most probable result is the **AVERAGE** result

$$P_G = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{1}{2}\left(\frac{x-\overline{x}}{\sigma}\right)^2\right]$$

- \overline{x} : Average or mean of the data
- $\sigma\,$: Standard deviation of the data

GAUSSIAN DISTRIBUTION aka "The Bell Curve"

$$P_G = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{1}{2}\left(\frac{x-\overline{x}}{\sigma}\right)^2\right]$$

Peak of curve: $x = \overline{x}$ $\overline{x} = \frac{1}{N} \sum_{i} x_{i}$

$$\sigma^2 = \frac{1}{N-1} \sum_{i}^{N} (x_i - \overline{x})^2$$

When we average a set of data, the implicit assumption is a Gaussian Distribution

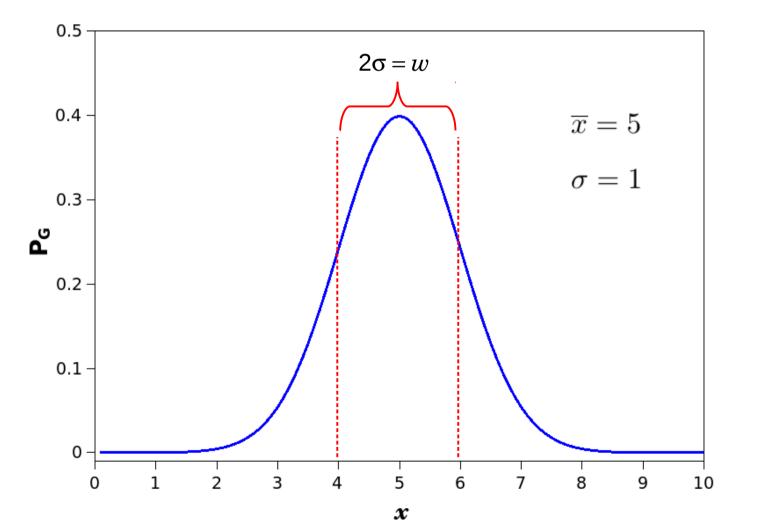
$$P_G = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{1}{2}\left(\frac{x-\overline{x}}{\sigma}\right)^2\right]$$

CAUTION: Sometimes written with *w*

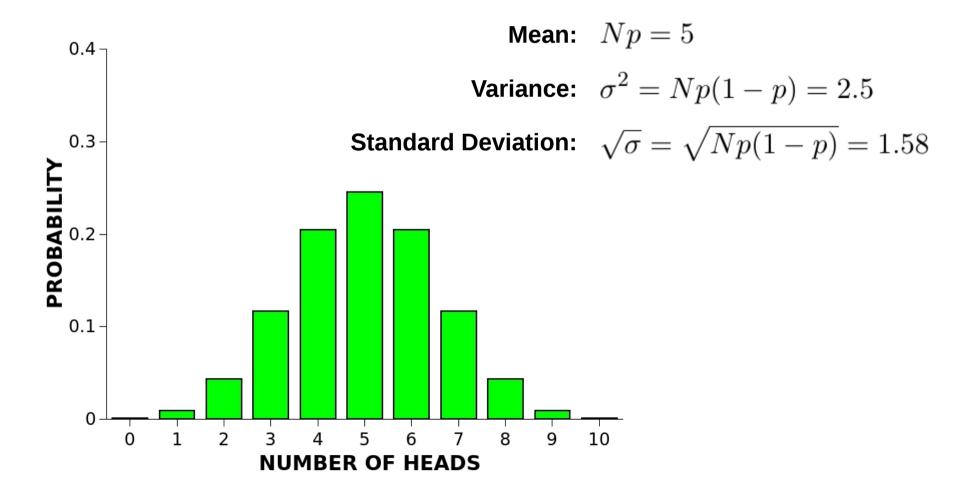
$$P_G = \frac{1}{w} \sqrt{\frac{2}{\pi}} \exp\left[-2\left(\frac{x-\overline{x}}{w}\right)^2\right]$$
$$w = 2\sigma$$

$$P_G = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{1}{2}\left(\frac{x-\overline{x}}{\sigma}\right)^2\right]$$

There is a 68% chance that a measurement will lie within $\,\overline{x}\pm\sigma\,$

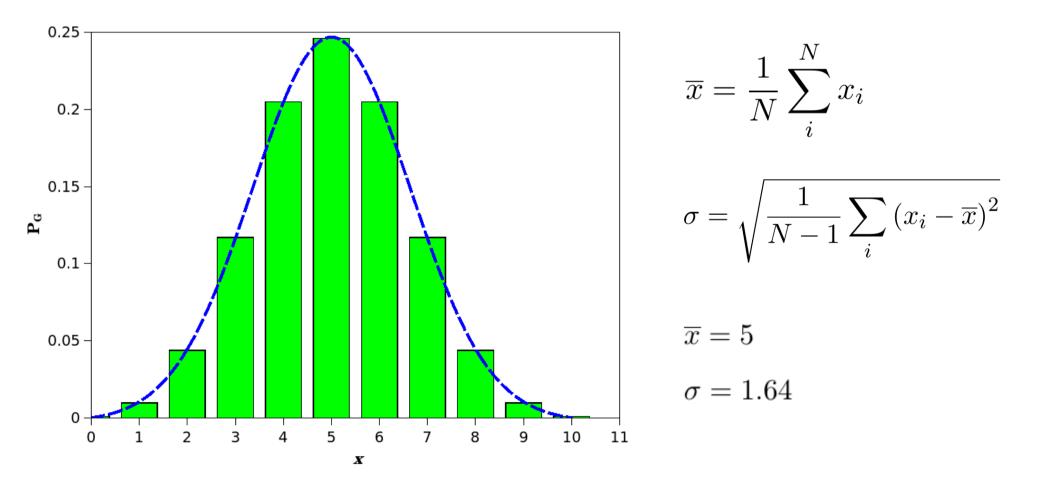


Number of HEADS occurring on 10 consecutive coin flips BINOMIAL DISTRIBUTION

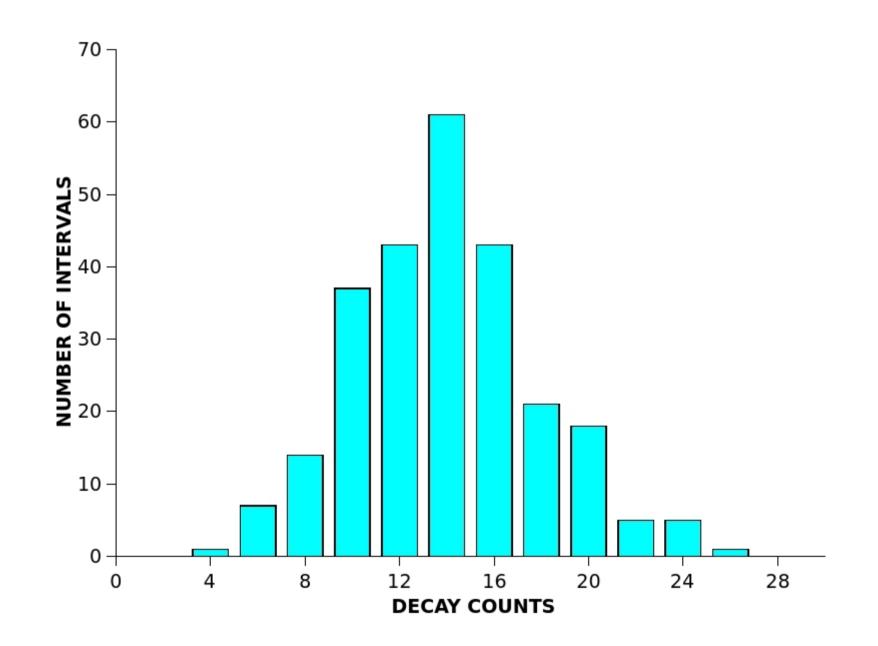


Fitting with a Gaussian

$$P_G = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{1}{2}\left(\frac{x-\overline{x}}{\sigma}\right)^2\right]$$

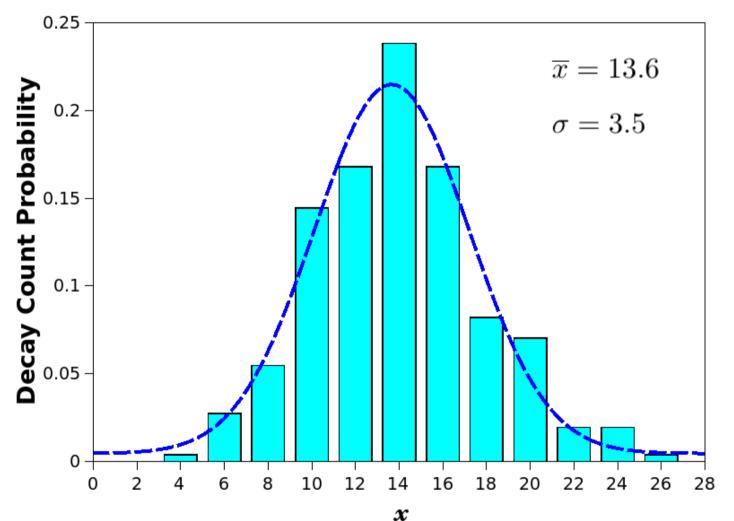


Experimental Radioactive Decay Data

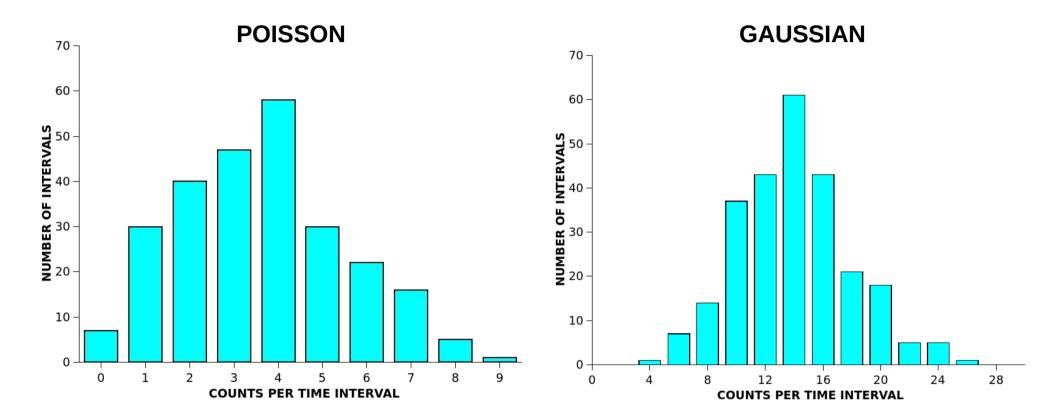


Experimental Radioactive Decay Data

Distribution fit with a Gaussian Curve



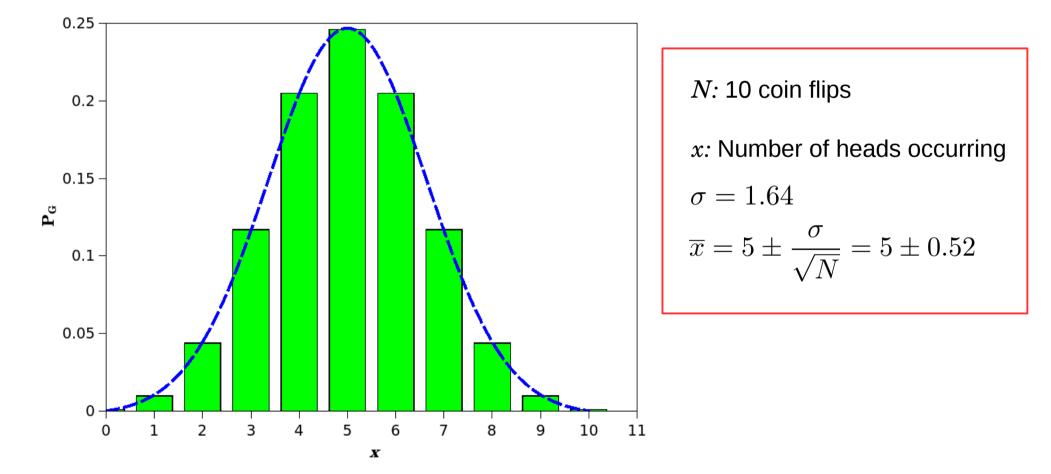
Recall that: Poisson transitions to Gaussian as data count rate increases



Uncertainty of the *Mean Value*: $\overline{x} \pm ?$

 $\overline{x} \pm \frac{o}{\sqrt{N}}$

- Gaussian distribution; N data points
- \bullet Uncertainty of distribution: σ
- Uncertainty in $\ensuremath{\textit{Mean}}$ decreases with N



Implications of increasing N

$$\overline{x} \pm \frac{\sigma}{\sqrt{N}}$$

Assumes all data in distribution has same uncertainty

As $N \rightarrow \infty$, accuracy becomes perfect i.e. no error!

Acquiring huge amount of data may not be possible

Experiment may drift with time: Systematic error

Very difficult to eliminate all systematic errors

Individual data points x_i have corresponding uncertainties σ_i Different error bars for different data points

Weighted Mean:
$$\overline{x} = \frac{\sum(x_i/\sigma_i^2)}{\sum(1/\sigma_i^2)} \pm \frac{1}{\sqrt{\sum(1/\sigma_i^2)}}$$

$$\lim \sigma_i \to \sigma \qquad \overline{x} = \frac{1}{N} \sum x_i \pm \frac{\sigma}{\sqrt{N}}$$

Comparing Distribution Functions

Binomial: Probability of observing x in N trials when the probability p of x occurring is known

$$P_B = \frac{N!}{(N-x)! \; x!} \; p^x (1-p)^{N-x}$$

Poisson: Approximation to Binomial Values of *x* are strictly bounded $x \ge 0$ Primary useful for low data/count rates Standard deviation: $\sigma = \sqrt{\lambda}$ Asymmetric distributions

$$P_P = \frac{\lambda^x}{x!} e^{-\lambda}$$

Gaussian: Approximation to Binomial Usually more convenient for analyzing experiments x < 0 allowed

$$P_G = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{1}{2}\left(\frac{x-\overline{x}}{\sigma}\right)^2\right]$$