LECTURE 4: Probability
and Statistics (Part 2)




PROBABILITY DISTRIBUTION FUNCTIONS

« GAUSSIAN: Random data, experimental parameters uncertain

* POISSON: Number of counts in a specified time interval

 BINOMIAL: Small number of possible outcomes (eg. heads or tails)

What is the probability Py of x events occurring in NN trials
if the single event probability is p?




PROBABILITY DISTRIBUTION FUNCTIONS

« GAUSSIAN: Random data, experimental parameters uncertain

 POISSON: Number of counts in a specified (time) interval

 BINOMIAL: Small number of possible outcomes (eg. heads or tails)



POISSON DISTRIBUTION

An approximation to the Binomial distribution

Probability p gets small

Large number trials: N is big

Typically: Counting x events occurring in a time interval
Events individually distinguishable; uncorrelated

Mean rate: A = Np

Standard deviation: o = V' \



EXAMPLE: NUCLEAR DECAY

Half-life: Multiple years = Decay probability p very small
Number of nucleii IV very large

Mean rate: A = Np;
...but N and p are likely unknown!

£
A = Total events counted o A —A
Total observation time !




EXAMPLE: NUCLEAR DECAY

Count number of radioactive decays x in a series of intervals of duration t

Plot on a histogram:
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256 intervals
Asymmetric distribution
Most intervals count x = 4 decays
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EXAMPLE: NUCLEAR DECAY

Comparing experiment with theory

Statistical error = VCounts
Applies to Poisson Distribution only!

THEORY:
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EXAMPLE: NUCLEAR DECAY

Experiment repeated with same number of
measurement intervals

But much higher count rate

As p increases, distribution becomes
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EXAMPLE: Probability of SIX appearing when dice tossed
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One SIX appears 10/36




EXAMPLE: Probability of SIX appearing on dice

Exactly described by a Binomial Distribution
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Can a Poisson Distribution reasonably describe the dice toss?

Poisson approximates Binomial when p small; N large

A Pp — —C
\ !

A = Np is known here
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PROBABILITY DISTRIBUTION FUNCTIONS

« GAUSSIAN: Random data, experimental parameters uncertain

* POISSON: Number of counts in a specified time interval

 BINOMIAL: Small number of possible outcomes (eg. heads or tails)



GAUSSIAN DISTRIBUTION
aka “The Bell Curve”

An approximation to the Binomial distribution

Number of trials IV gets large

Np >>1

Most experimental distributions are Gaussian

Most probable result is the AVERAGE result

1 1 (z—7\°
Pa = exp | —=
oV 2T p{ 2( o )}

T . Average or mean of the data

0 : Standard deviation of the data



GAUSSIAN DISTRIBUTION
aka “The Bell Curve”

a\/ 2T

1 1
Pa = exp {
2 o

_ . 1
Peakofcurve: © =2 T = < Z

When we average a set of data, the implicit assumption is
a Gaussian Distribution



b 1 1(:1::1:)2
= exp | ——
o\ 27 P 2 o

CAUTION: Sometimes
written with w




Pc

o\ 2T 2 o

N\ 2
1 l (-7
Fa = exp ——( )

There is a 68% chance that a measurement will lie within 7 + o
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PROBABILITY
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BINOMIAL DISTRIBUTION

Mean: Np =5
Variance: o = Np(1 —p) = 2.5

Standard Deviation: /o = \/Np(1 — p) = 1.58
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Fitting with a Gaussian
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Experimental Radioactive Decay Data
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Experimental Radioactive Decay Data

Distribution fit with a Gaussian Curve
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Recall that:
Poisson transitions to Gaussian as data count rate increases
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Uncertainty of the Mean Value: 7 + ?

e Gaussian distribution; N data points B
 Uncertainty of distribution: ¢ T+
* Uncertainty in Mean decreases with N
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Implications of increasing N

Assumes all data in distribution has same uncertainty
As N — oo, accuracy becomes perfect i.e. no error!

Acquiring huge amount of data may not be possible
Experiment may drift with time: Systematic error

Very difficult to eliminate all systematic errors



Individual data points x; have corresponding uncertainties o;

Different error bars for different data points
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Comparing Distribution Functions

Binomial: Probability of observing x in N trials when the probability p
of x occurring is known

N N o
Pr — (1 — p N—x
BE N _om PP
. L : : A\
Poisson: Approximation to Binomial Pp = _ﬁ—,\
Values of x are strictly bounded x = 0 x!

Primary useful for low data/count rates
Standard deviation: o = /)
Asymmetric distributions

Gaussian: Approximation to Binomial
Usually more convenient for analyzing experiments

x < 0 allowed
N 2
1 l fx—=
FPa = exp | —=
o\ 2T p{ 2( o )}




