PHYC 500: Introduction to LabView
M.P. Hasselbeck, University of New Mexico

Exercise 10 (v 1.2)

This exercise demonstrates resource management in LabView. The goal is to: i) read a
data file on the Internet, ii) convert the data file to a 1-D array of floating point numbers,
iii) write this 1-D array to a file on the local disk, iv) open the file and use its data in a
summing For Loop, and v) write the new data to disk. This is implemented in two
independent VlIs.

The file of interest is located at this URL:
http://www.unm.edu/~mph/500/Ex10

The file can be accessed in LabView with a Data Socket, which should be open, read, and
then closed.

Open a blank VI. Create a string control on the front panel and copy the entire URL
above into it. The characters [text] must be appended to the URL string. This is
performed with the Concatenate Strings function, which splices two strings together to
make a single string of characters. Here it will be:

http://www.unm.edu/~mph/500/Ex10[text]

Wire this string to the URL input of Data Socket Open (locate it with Quick Drop) and
configure its mode terminal for Read. Right-click on the terminal and create a constant;
then select Read. Pass the connection id to Data Socket Read. This function must be
instructed as to what type of data it is dealing with; wiring any string to the type
(Variant) terminal defines the data type. In the diagram shown below, a blank string
constant is used, but any string will work because the content is ignored. Close the
resource when the read completes.

Error Cluster

Error handling is important for reliable VI operation and is essential when making
connections to external devices. An error cluster wire (dark yellow/white) is shown in the
Block Diagram. LabView provides error information on many of its built-in functions;
this information appears on an error cluster. The error cluster terminals are usually
located on the lower left (error in) and lower right (error out) corners of the icons.

There are three components of an error cluster: i) a T/F Boolean indicates whether an
error occurred, ii) an integer code for the error, and iii) a string with the location of the
error. When an error occurs, this information propagates down the cluster wire. Any
operation that encounters the error condition will be skipped.

For example, in the above Block Diagram, failure to open the URL will result in an error
that appears on its error out terminal. The error propagates through the Read and Close
operations, which are are skipped. The error is then read by the Simple Error Handler,
which provides an informative pop-up dialog to the user.

With a working Internet connect, test the VI.

The data string is converted to a 1-D array using the Spreadsheet String to Array
function. In addition to the spreadsheet string from the Data Socket Read, this
function requires formatting and configuration for a 1-D array (2-D is default). LabView
has a powerful numeric formatting capabilities. Use the format syntax %.6f on the
format string terminal. This specifies a floating point number with 6 digits of precision
after the decimal point. Next, place an Array Constant on the Block Diagram. Create a
DBL Numeric Constant and drop it into the Array Constant to define a 1-D array.
Connect it to the array type terminal. This forces the function to produce a 1-D array of
DBL floating point numbers.

%6.6f |

B
iRl

1-H 2

A spreadsheet file can be created and written in a single, high-level operation using Write
Delimited Spreadsheet File.vi found on the File I/O palette. Wire the 1-D array data to
the appropriate input and format as %.6f as before. When the VI is run, the user will be
prompted to save a file to disk. Also save the working VI.

Open a blank VI and place Read Delimited Spreadsheet File.vi on the Block Diagram.
This high-level VI will be used to access the 1-D array file written above. It will deliver
the data on the output terminal labeled first row. Set the format syntax to %.6f and
wire the output into a For Loop. To setup a user prompt for opening the file, the Express
VI File Dialog can be used:

o

'
Read data file T

File Dialog o
selected path »

w w W W W ¥ W

1-H 2-H

Double =

Using LabView's factorial function, divide each term in the data file by i! where i is the
iteration count of the For Loop. Sum the result of each iteration using a shift-register
(don't forget to initialize it to 0). Mathematically, the following finite series is being
constructed:

X

il
1=0

If performed correctly, the series should sum to a value very close to 0.05.

Each term in the series should be written to a separate text file. This can be done when
the For Loop exits, but it is often desirable to record data as it is being generated. This
would be useful in a lengthy experiment, allowing some data to be recovered if a crash
occurred before the experiment completed.

From the File I/O palette, select the Open/Create/Replace File VI and place it on the left
outside of the For Loop. Configure it to replace or create and add a custom user
prompt. The refnum is wired to a Write to Text VI inside the For Loop. Each series
term is a floating point number that must be converted to a text string using Number to
Fractional String VI. The Concatenate Strings functions adds a Line Feed character to
the end of each data point so the data is displayed in a single column; otherwise, a single
continuous line of text would be written. When the For Loop exits, the file is closed as
shown:

[File to save cu:uEFFicientsI-—]

a1

[replace or create vH "'D

You will need to disable indexing at both of these output tunnels by selecting Last Value
in the Tunnel Mode.

This VI is dealing with two files: one is being read and a second is written. To force the
read operation followed by write, connect the error out cluster from the File Dialog
Express VI to the error in terminal of the Open/Replace/Create File VI. Terminate the
error cluster in both VIs with a Simple Error Handler. This illustrates a second powerful
feature of the error cluster. Data flow programming requires that every input terminal
must be populated with data before a function or node can execute. The error cluster
allows the LabView programmer to determine exact order of execution inside a VI.

