PHYC 500: Introduction to LabView
M.P. Hasselbeck, University of New Mexico

Exercise 2 (v 1.2)

In Exercise 1, a VI was written to find the roots of a quadratic equation and take care of
complex numbers. A Case Structure was used to alert the user if the roots were complex.
The present exercise expands on this; the VI will continue to run and warn the user until
real roots are obtained.

While Loop

Open a blank VI and enable Context Help (CTRL-H or click ? on the menu bar). Go to
the Block Diagram, right-click, and select Structures: While Loop. A square dotted cursor
will appear; use this to create a While Loop. This structure executes all the code
contained within it over and over until it is commanded to stop.

Note that the Run arrow is broken; clicking on this broken arrow reveals that a
“Conditional terminal is not wired”. This terminal defines the stop condition for the
While Loop and appears in the lower-right corner of the structure. The stop terminal is
expecting a Boolean (T/F) input. Generate a Boolean control by right-clicking on the
terminal and “Create Control”. A Stop Button terminal appears along with a
corresponding control on the Front Panel. This will result in a working VI, although with
no useful code.

The blue terminal [i] in the lower-left is an integer that counts each time the While Loop
executes. Right-click on it and create an indicator (see diagram below); this will also
appear on the Front Panel. Note that the indicator icon is also colored blue and denoted
as I32, which corresponds to a 32-bit integer. Important: The first iteration of a While
Loop is always 0, not 1. Failure to realize that loops begin counting at 0 is one of the most
common mistakes of new LabView programmers.

Go to the Front Panel and run the VI. Depending on the processor speed and computer
resources, the loop will likely execute many millions of times in just a few seconds. Stop



the VI with the button on the panel.

Mumeric

[i |52

It can be a dangerous programming practice to let a While Loop run as fast as possible.
Its execution can be slowed down with the use of timing functions. Right-click the Block
Diagram and select Timing: Wait (ms) and place this icon inside the While Loop. Right-
click on the left icon input terminal and Create Constant. This will produce an integer
constant of 0. Set the value to 1000 ms, i.e. 1-second and run the VI again. Verify that
the loop count increments at 1-Hz.

Note: The functions Wait (ms) and Wait until next ms Multiple on the Timing palette
are slightly different. The first is easiest to understand: the code will always pause for
the specified time. The second function is used to precisely time the execution of loops. It
forces the loop to execute exactly at the specified interval. This can be illustrated with an
example. Assume there is code inside a While Loop that takes 50 ms to execute. If a Wait
(ms) is placed in the loop and set for 100 ms, the loop will execute every 150 ms. If Wait
until next ms Multiple is used with a value of 100 ms, the loop will execute every 100
ms.

Go to the Block Diagram and place the stop button icon outside the While Loop. Re-
connect it to the conditional stop terminal inside the loop. The point where the wire
passes through the While Loop structure is called a tunnel. Run the VI and notice that
the stop button is unresponsive. The program can only be stopped with the Abort button
on the menu bar. This illustrates an important aspect of data flow programming — when
a loop is running it will ignore any input that is outside the structure. Data can be wired
into a loop from outside, but once a loop is started anything present on input tunnels is
ignored. Just as important: Data only propagates through output tunnels when the loop
has stopped executing.

Open the saved VI from Exercise 1 that has the Case Structure with a user alert dialog.
Go to the Block Diagram and place a While Loop around the entire code. Wire a
connection from the Boolean output of the <0 comparison function to the Stop terminal of
the While Loop. This will appear as a green dotted line. The loop should continue
executing for as long as complex roots exist, i.e. if the output is True. Right-click on the



stop terminal and change it to “Continue if True”. When real roots are found, the VI will
stop. If the VI is run at this point, however, it will be difficult/impossible for the user to
interact with the program if complex roots are detected. There is essentially no time to
clear the dialog and enter new coefficients. The VI will be stuck in an infinite loop. To
address this problem, place a 6-second wait inside the While Loop.

Polling

LabView is powerful and flexible enough to offer a variety of solutions to programming
problems. Completely remove the Case Structure from the Block Diagram. Keep the <0
Boolean output wired to the While Loop stop terminal. Right-click on the dotted green
wire and Create: Indicator. A Boolean terminal will appear in the Block Diagram.
Double-click this terminal to locate the corresponding indicator on the Front Panel.
Right-click on this indicator, Replace: Boolean: Round LED. Select the LED with the
arrow tool; hold down the Shift key and drag the LED to double its size. Use the Operate
Value tool (pointed finger) to toggle between the two Boolean states. Use the paintbrush
to change the True state from bright green to bright red. Select the False state; change
the color from dark green to dark red. Change the indicator label to read “Complex
Roots”. Remove the Wait function to allow the fastest possible operation. Run the VI and
verify that the LED is on (bright red) when complex roots are present. This warning light
alerts the user without the need to clear a dialog box by clicking the OK button.

Go back to the Block Diagram and create an indicator to display the loop count number
as done above. Run the VI again and observe that many millions of cycles occur while
waiting for user input. This action is called Polling, which consumes CPU resources even
though nothing useful is taking place inside the program. This can be addressed by
placing a Wait function in the While Loop, but a better solution is to use an Event
Structure that is presented in Exercise 3. Save the current VI.



