PHYC 500: Introduction to LabView
M.P. Hasselbeck, University of New Mexico

Exercise 4 (v 1.2)

For Loop

The For Loop is similar to the While Loop except that it will not execute indefinitely; it
stops after a specified number of iterations. To understand the operation of a For Loop, a
VI will be written to evaluate a truncated geometric series:
1 ; .
f(:n):l =l4z+22+23+...
—

for x| < 1. Open a blank VI, go to the Block Diagram, and select a For Loop from the
Structures palette. The Run button is immediately broken because the number of loop
iterations has not been specified. Right-click on the [N] terminal on the upper-left corner
of the structure and create an integer control; this will specify the number of terms in the
series. There are a variety of clever approaches to calculate each term. An easy way is to
select Mathematics: Elementary & Special Functions: Exponential: Power of X (with label
x7y) and place it in the For Loop. Right click on the x input terminal and create a
control. Drag this DBL icon outside the For Loop and re-wire it. The exponent is
implemented by wiring input y to the iteration terminal [i] at the lower-left corner of the
For Loop. The first value of the loop counter is always 0, which creates the desired first
term x0 = 1. It is important to remember that the iteration terminal always starts
counting at 0 for both While and For Loops.

Next we need a mechanism to add each term in the series. One way to do this is with a
Feedback Node. Wire the output of the xAy function to one terminal of a Sum operation.
Loop the Sum output back into the other input; a Feedback Node should automatically
appear as shown below:

MNumber
of terms

This operation can also be placed in the Block Diagram directly via Structures: Feedback
Node. It's important to initialize the summing operation. For the Taylor Series it will be
zero. Right-click on the asterisk (*) on the Feedback Node and create a constant. It
should show the default value of zero.

Note: The Feedback Node will retain its last value in volatile memory. When the VI is re-
started, it will initialize the Feedback Node to this stored value unless the * terminal has
been set to a desired starting value.

Create a floating-point numerical indicator for the Taylor Series and place it outside the
For Loop. When you attempt to wire the sum operation to this indicator, however, a
broken wire will appear. The reason is that the default output of this For Loop tunnel is a
1-D array corresponding to the incremental construction of the series, i.e. each term in
the updated sum. We are only interested in the final result on the last iteration. To
prevent the For Loop from producing an array output, right-click on the output tunnel
and select Tunnel Mode: Last Value. This disables indexing at the tunnel. You can now

wire directly to the single-value numeric indicator as seen in the diagram:

Mumber
of terms

Series
)

Also shown is an exact evaluation of f(x) implemented with a formula node; inputs and
outputs are created by right-clicking on the edge of the structure. You can alternatively
use a combination of numeric operations for the calculation. The two results can be
compared to determine how accurate the truncated Taylor Series approximation is.
Verify that more terms are necessary to maintain accuracy as |lx| approaches 1.

Comparison of While and For Loops

i) Both begin counting at index 0.

ii) While Loop must execute at least once; For Loop will not execute if N=0.

1i1) While Loop has indexing of output data disabled by default; only the last value of the
loop operation passes through the output tunnel.

iv) For Loop has indexing of output data enabled by default; values from every iteration
are passed through the output tunnel, generating an array.

v) The default indexing behavior can be changed by right-clicking on the output tunnel
and selecting Tunnel Mode.

Shift-Register

The Shift-Register is a more general implementation of a Feedback Node. Here, a direct
replacement can be made. Right-click on the Feedback Node and select “Replace with
Shift Register”. The Shift Register appears as a pair of down/up arrows on the left/right
edges of the For Loop as shown in the following Block Diagram.

MNumber
of terms
(132} M
" m_'__f_1 Series
k = PR ¥

As with the Feedback Node, the output of iteration number i—1 becomes the input for
iteration i. The Shift Register is initialized for iteration i = 0 by placing the constant 0 on
its left terminal. In this example, this initializes the sum to 0. If the Shift Register is not
initialized, it will start with the value it has its in memory, i.e. the value of the last
iteration of the VI.

Save your working VI.

The essential idea of a Feedback Node and Shift Register is to make values from previous
iterations of a loop available to the current iteration. You can access data from the i—2
iteration by clicking on the Shift Register and selecting “Add Element”. If you do this
again, data from the i—3 iteration is available and so on. The Shift-Register and
Feedback Node work in both the For Loop and While Loop. Their operation is essentially
identical and deciding which one to use is a matter of personal preference. Most LabView
programmers use Shift-Registers because it more flexible and the code is easier to read.

Make an Interactive VI

Use the concepts of While Loop, Event Structure, and Case Structure developed in the
previous exercises to make the Taylor Series VI continuously interactive. Place the Block
Diagram code inside an Event Structure and surround this with a While Loop. Evaluate
the loop when a value change occurs at the controls x or Number of Terms. Also, check
for the condition |x| < 1 and warn the user if this is violated.

Tip: If needed, the For Loop can be configured to stop before the specified number of
iterations is reached. Right-click on it boundary and select the Conditional Terminal. Its
function is the same as in a While Loop. Note that the different appearance of the count
terminal on the upper-left corner (see below).

[

