REU 2018: Introductory LabVIEW Workshop
M.P. Hasselbeck, University of New Mexico

SUMMARY: This hands-on workshop will provide an introduction to the capabilities of
the National Instruments LabVIEW software package. LabVIEW is easy to learn and can
be very useful for automated instrument control and data recording. We will use
LabVIEW to setup a program (called a Virtual Instrument or VI for short) to control the
temperature of a simulated optical cryostat. Optical cryostats are used in some of the
research labs in our department. These instructions are designed to be used in tandem
with instructor guidance.

Part 1. Open LabVIEW and create a new Virtual Instrument (VI). There are two
primary interfaces: the Front Panel and the Block Diagram. The user interface is on the
Front Panel and the program code goes in the Block Diagram. You can place these two
windows side-by-side or toggle between them.

To see how LabVIEW works, we will implement the simple arithmetic operation a + b =
sum. Go to the Front Panel of your blank VI. Select View: Tools Palette. The top button
in the palette enables/disables automatic tool selection. For a new user, it's probably a
good idea to disable this function. Select the arrow tool. Right click anywhere on the
blank Front Panel to open the Controls palette. Pin this window open at its upper-left
corner. Select and place two numeric controls and label them a and b. Next right-click
and place a numerical indicator called sum on the Front Panel.

Go to the Block Diagram and identify the three terminals (two inputs, one output). These
icons are orange double-precision floating point, but notice the different color shading and
location of the small black arrow that distinguishes inputs and outputs. Right-click in a
blank area and open the Numeric palette. Pin it open at the upper-left corner of the
window. You will see icons representing the various mathematical functions including x2,
Vx, and (—x). We want the addition operation. Select it and drop it into the Block
Diagram. Use the Connect Wire tool to implement the equation above; this is a left-click
and drag operation to connect the various ports on the terminal. The Block Diagram
should look similar to this:

LabView is constantly monitoring for errors while you are building a VI. If one or more
problems exist, the run button (arrow) on the upper-left menu bar will appear broken. If

you click on the broken arrow, a window will open listing all the existing errors. When
the execution arrow is solid, the VI will run. Switch to the Front Panel, choose two input
values (a,b) and push the run button to generate the sum. These are floating point
values, so digits to the right of the decimal points are valid inputs.

Go to the Block Diagram and click Highlight Execution (light bulb icon). Run the VI
again. This slows down the operation so that you can see the flow of information.

Part 2. When working with LabView, it's usually a good idea to have the Context Help
enabled. This is found in the Help menu, clicking the question mark button on the menu
bar, or by typing CTRL-H. When you scroll over an icon or object, a Help window will
provide useful specific information. LabView also uses “tip strips”, which can display
information when the mouse is hovered over a control or indicator of a running VI.

Open a new blank VI. Go to the Block Diagram, right-click, and select Structures: While
Loop. A square dotted cursor will appear; use this to create a While Loop. This structure
executes all the code contained within it over and over until it is commanded to stop.

Note that the Run arrow is broken; clicking on this broken arrow reveals that a
“Conditional terminal is not wired”. This terminal defines the stop condition for the
While Loop and appears in the lower-right corner of the structure. The stop terminal is
expecting a Boolean (T/F) input. Generate a Boolean control by right-clicking on the
terminal and “Create Control”. A Stop Button terminal appears along with a
corresponding control on the Front Panel. This will result in a working VI, although with
no useful code.

Notice that the Boolean control and its connection wire are green. In the first block
diagram the icons were both orange corresponding to floating point values. These colors
help the programmer identify the different data types that are in use.

The blue terminal [i] in the lower-left is outlined in blue, representing an integer index
that counts each time the While Loop executes. Right-click on it and create an indicator
(see diagram below); this will also appear on the Front Panel. Note that the indicator
icon is also colored blue and denoted as I32, which corresponds to a 32-bit integer. The
first iteration of a While Loop is always 0, not 1.

Go to the Front Panel and run the VI. Depending on the processor speed and computer
resources, the loop will likely execute many millions of times in just a few seconds. Stop
the VI with the button on the panel.

Mumeric

[i | b5z

It can be a dangerous programming practice to let a While Loop run as fast as possible
because it will attempt to draw the maximum CPU cycles, potentially slowing down other
important tasks. While Loop execution can be slowed down with the use of timing
functions. Right-click the Block Diagram and select Timing: Wait (ms) and place this
icon inside the While Loop. Right-click on the left icon input terminal and Create
Constant. This will produce an integer constant of 0. Set the value to 1000 ms, i.e. 1-
second and run the VI again. Verify that the loop count increments at 1-Hz.

Go to the Block Diagram and place the stop button icon outside the While Loop. Re-
connect it to the conditional stop terminal inside the loop. The point where the wire
passes through the While Loop structure is called a tunnel. Run the VI and notice that
the stop button is unresponsive. The program can only be stopped with the Abort button
on the menu bar. This illustrates an important aspect of data flow programming — when
a loop is running it will ignore any input that is outside the structure. Data can be wired
into a loop from outside, but once a loop is started anything present on input tunnels is
ignored. Just as important: Data only propagates through output tunnels when the loop
has stopped executing.

Part 3. Put the stop button back inside the While Loop and re-connect it to the
conditional stop. Use the Numeric palette to take the square of the loop iteration counter
each time the loop executes. You will need a numeric indicator to display the result on
the Front Panel, which should be the integer sequence 0, 1, 4, 9, 16...

Now we will sum these terms to generate the series:

2"
1=0

This will require that information from each loop iteration be available for the next

calculation in the sequence. Specifically, we must add each new term i to update the
sum.

To pass information between loop iterations, LabVIEW makes use of a Shift Register.
Right-click on any edge of the While Loop structure and Add Shift Register. You will see
a tunnel on the left-side of the structure with a downward pointing arrow and a second
tunnel on the right-side with an upward arrow. These tunnels are where data from the
previous iteration is pulled in and out, respectively.

Setup a VI to generate the series using the Block Diagram shown below. The running
sum exits each iteration at the right tunnel and re-enters at the left tunnel for the next
iteration. On the very first iteration, data in the Shift Register is undefined. We
initialize it to zero by connecting it to a constant outside the loop. This can be easily
accomplished by right-clicking on the terminal and selecting Create Constant. The Shift
Register changes color to show the data type it handles. Here it is blue for integer.

Current term

There are three indicators to show the loop iteration count i, the current term i2, and the
running sum. By placing Sum inside the loop, its value is updated on each loop iteration.
If placed outside the loop, we will not see the result of the summation until the loop is
stopped.

Part 4. LabVIEW is used to control the temperature of a simulated optical cryostat
shown below.

Liquid
Nitrogen
(T7TK)

Vacuum

Controller Coldfinger

Resistive

. heater
Heater wire
II| Sample
Temp. Sensor holder

A liquid nitrogen reservoir at 77 K is thermally linked to a sample holder via a
conductive copper shaft called a coldfinger. The liquid nitrogen reservoir, coldfinger, and
sample are insulated from room temperature laboratory air by a vacuum enclosure. A
sensor reads the temperature of the sample. Temperature is adjusted by supplying
current to a resistive heater wire that is wound around the coldfinger. Flat windows on
the enclosure allow optical access to the sample for experiments, eg. a laser beam.

Temperature control can be understood as a balance between conductive heat removal by
the liquid nitrogen reservoir (modeled by Fourier's Law) and Joule heating in the
resistive wire (described by Ohm's Law):

dT
—- = —BAT + ol*R

In this differential equation, I is DC current, R is the resistance of the heater wire, and «
and f are constants. AT is the temperature difference between the sample and the
coldfinger that remains fixed at 77K. This system can be setup and analyzed in
LabVIEW by re-casting the differential equation as a difference equation. The differential
time dt is implemented with discrete time-steps At:

Tiy1 — Ty = [—B(T; — T7K) + al*R] At

This allows LabVIEW to calculate a new temperature T},; on each iteration.

Create a While Loop and add a control button to the conditional stop. The time-behavior
of the cryostat is modeled with a SubVI called heater2.vi found on the class homepage.
Save it to your computer. Right-click inside the While Loop and highlight “Select a VI...”.
Browse to the location of heater.vi and select it. You can also drag it directly into the
Block Diagram.

The While Loop should execute at 2 Hz. Right-click and select Timing: Wait (ms). Create
a 500 ms constant and wire it to the left terminal of the Wait function. This sets the time
step At. This time step must also be set on the dt input terminal of the SubVI. This
input is specified in seconds, so wire a 0.5 constant there. Place a Shift Register on the
While Loop by right-clicking on it and selecting “Add Shift Register”. This is used to pass
the temperature T; between loop iterations. Connect the Shift Register output terminal
(right-side arrow) to Tout on the SubVI. Connect Tin to the Shift Register input
terminal. Create a constant 77 on its input (left-side arrow) to initialize the Shift
Register. Wire a 77 constant to the Tamb terminal of the SubVI.

Chart
r
Temp (K]
77 3
77
HEATER
L A
Manual
Heater |05
Control
Stop Button
soH &Y 0 =

Right-click on the current input terminal of the SubVI and create a control. Double-click
on the icon to find this control on the Front panel. Right-click on the control and Replace:
Numeric: Vertical Pointer Slide. Right-click on the slider, select Properties, select the
Scale tab, and change Maximum to 1 on the Scale Range. Right-click on the Front Panel
and select Graph; Waveform Chart. Right-click on the Plot Legend and choose the
common plot depicting individual points. Go back to the Block Diagram and wire the
Waveform Chart to the SubVI output terminal labeled Tout. Right-click on the Tout
terminal and create a numerical indicator. The sample temperature will be shown on
this indicator and displayed graphically on the chart.

Chart rioto B |

Temp (K)
105.5
1.0-
< 08-
w =
2 0.6~
g -
£ 04-
[T} o
= 0.2- B Manual
z Heater
00- Contral
84-) | Stop Button
27 127 [
Tirme . Stop

The above Front Panel has been modified from the default values. The y-axis of the chart
has been changed to Temperature (K) and the controls have been expanded and different
colors used. This customization is not required to get a working VI.

When you have successfully built this VI, the run arrow on the menu bar should be
unbroken. Set the manual heater control to zero and run the VI. Because no current is
passing through the heater wire, the temperature should be at a constant 77K. Increase
the current to attain a target temperature, for example 100K. Too much current will
cause an overshoot and too little will prevent the desired temperature from being
reached. You will find that it is very difficult to hit a desired setpoint using the manual
control. In a real experiment, holding the setpoint is even more difficult because of
changing conditions, eg. evaporating liquid nitrogen.

Part 5. LabVIEW can automate temperature control. This is done with a closed-loop
controller, with operation illustrated in the following system diagram:

COMPUTE & CORRECT

Reference « Error
—_—] signal
COMPARE Controller > SYSTEM —
4 Sensor
MEASURE

The idea is to measure the system temperature and compare to a reference, which is the
desired temperature setpoint. The difference between the actual temperature and
setpoint is the error signal. The error signal determines how much current is sent to the
heater. This operation replaces the manual heater control.

The error signal is Tsetpoint — T4, Where Ti is the current temperature. We must use care,
however, to prevent our simulation from being unphysical. There are two issues:

First, if the heater pushes temperature above the setpoint, the error signal is negative. If
temperature goes above the setpoint, we want the sample to cool but it makes no sense to
apply negative current to the heater. The heater works no matter which direction
current is flowing. Our only option is to turn the current off and let the temperature drift
back to 77K.

Second, there is a limit to how much current can be produced. Ifthe sample temperature
is far below the setpoint, the error signal will be a large positive number. We must clamp
the maximum current to 1, which is the limit of the heater power supply.

These conditions require us to make comparisons and decisions in the program logic.
Specifically, if the error signal is negative, the current is set to zero. If the error signal is
greater than 1, the current must be clamped at 1. This is easily coded into the LabVIEW
Block Diagram as shown below.

The existing While Loop can be expanded to make more space. Select the arrow tool,
place it to the left of the SubVI, hold down the Ctrl key, right-click and drag the cursor.
Delete the manual heater control. Add a Setpoint control for the Front Panel.

Chart

Temp (K)
77 ’
WSetpoint (1K) |9 1 1
HEATER
B - [I%;? AW
1 0.5
r
Heater Stop Button

LabVIEW must check if the error signal is negative. Right-click in a blank area and pin
open the Comparison palette. Find the < 0 function and place it in the Block Diagram.
The output of a comparison is Boolean TRUE or FALSE, shown by the green data line.
The T/F Boolean output is used to decide whether to make the heater current zero. Find
the Select function in the Comparison palette and add it to the Block Diagram as shown.
LabVIEW's Context Help will assist in connecting it. Wire the Boolean output of the
comparison to the center terminal of Select. If the comparison is TRUE, the top terminal
is selected. Place a constant 0 there. If FALSE, the error signal is unaffected. Wire the
error signal directly to the lower terminal of Select.

Next, LabVIEW will check if the error signal is > 1. Find the > function in the
Comparison palette, and wire it as shown. If the error signal exceeds 1, the Select

function clamps it at 1. Otherwise, the error signal propagates through to the current
input of the SubVL.

Even though we are automating temperature control, it's a good idea to have a Front
Panel monitor to watch what the heater is doing. Right-click on the current wire feeding
the heater and create an indicator. Double-click on the icon to take you to the Front
Panel. Right-click and replace the indicator with a vertical progress bar. Set the scale to
the range 0-1, just as was done with the manual heater control. A customized Front
Panel is shown below.

On the Front Panel, change the Setpoint to 77K. Run the VI and confirm that the
operating temperature holds constant at 77K. Change the Setpoint to 100K and observe
that the heater takes the temperature there in less than 30 seconds and holds it steady.
There should be a constant heater current and a slight negative offset from the setpoint.
Change the setpoint to 98K and confirm that the controller current immediately shuts off

Chart Pito A |

Temp (K} Setpoint (K)
99.7 * 100

Temperature (K)

l Heater

Stop Button

1
] 100 . ot
Tirme | op

to allow the temperature to fall. The current should turn on when the temperature drops
below 98K. Considerably more current and time will be needed to reach and maintain
higher temperatures in the neighborhood of 200K.

This is a simulation and a real laboratory cryostat would not respond as rapidly as
demonstrated here. Most temperature controllers have more sophisticated correction
parameters to allow for better dynamic response to the changing environment.

