

Chapter 2

Neuroscience and Behavior

- Biological Psychology
 - branch of psychology concerned with the links between biology and behavior
 - some biological psychologists call themselves behavioral neuroscientists, neuropsychologists, behavior geneticists, physiological psychologist, or biopsychologists
- Neuron
 - a nerve cell
 - the basic building block of the nervous system

Dendrite

 the bushy, branching extensions of a neuron that receive messages and conduct impulses toward the cell body

Axon

 the extension of a neuron, ending in branching terminal fibers, through which messages are sent to other neurons or to muscles or glands

Myelin [MY-uh-lin] Sheath

- a layer of fatty cells segmentally encasing the fibers of many neurons
- enables vastly greater transmission speed of neutral impulses

Myelin sheath (covers the axon of some neurons and helps speed neural impulses)

Action Potential

- a neural impulse; a brief electrical charge that travels down an axon
- generated by the movement of positively charges atoms in and out of channels in the axon's membrane

Threshold

 the level of stimulation required to trigger a neural impulse

- Synapse [SIN-aps]
 - junction between the axon tip of the sending neuron and the dendrite or cell body of the receiving neuron
 - tiny gap at this junction is called the synaptic gap or cleft

Neurotransmitters

- chemical messengers that traverse the synaptic gaps between neurons
- when released by the sending neuron, neurotransmitters travel across the synapse and bind to receptor sites on the receiving neuron, thereby influencing whether it will generate a neural impulse

Serotonin Pathways

Dopamine pathways

memory

SOME NEUROTRANSMITTERS AND THEIR FUNCTIONS

some people avoid MSG, monosodium glu-

tamate, in food)

Neurotransmitter	Function	Examples of Malfunctions
Acetylcholine (ACh)	Enables muscle action, learning, and memory	Undersupply, as ACh-producing neurons deteriorate, marks Alzheimer's disease
Dopamine	Influences movement, learn- ing, attention, and emotion	Excess dopamine receptor activity linked to schizophrenia; starved of dopamine, the brain produces the tremors and decreased mobility of Parkinson's disease
Serotonin	Affects mood, hunger, sleep, and arousal	Undersupply linked to depression; Prozac and some other antidepressant drugs raise serotonin levels
Norepinephrine	Helps control alertness and arousal	Undersupply can depress mood
GABA (gamma- aminobutyric acid)	A major inhibitory neuro- transmitter	Undersupply linked to seizures, tremors, and insomnia
Glutamate	A major excitatory neuro- transmitter; involved in	Oversupply can overstimulate brain, pro- ducing migraines or seizures (which is why

- Acetylcholine [ah-seat-el-KO-leen]
 - a neurotransmitter that, in addition to its role in learning and memory, triggers muscle contraction
- Endorphins [en-DOR-fins]
 - "morphine within"
 - natural, opiatelike neurotransmitters
 - linked to pain control and to pleasure

TABUBH BAS A Geproduct

- Nervous System
 - the body's speedy, electrochemical communication system
 - consists of all the nerve cells of the peripheral and central nervous systems
- Central Nervous System (CNS)
 - the brain and spinal cord
- Peripheral Nervous System (PNS)
 - the sensory and motor neurons that connect the central nervous system (CNS) to the rest of the body

Nerves

- neural "cables" containing many axons
- part of the peripheral nervous system
- connect the central nervous system with muscles, glands, and sense organs

Sensory Neurons

 neurons that carry incoming information from the sense receptors to the central nervous system

- Interneurons
 - CNS neurons that internally communicate and intervene between the sensory inputs and motor outputs
- Motor Neurons
 - carry outgoing information from the CNS to muscles and glands
- Somatic Nervous System
 - the division of the peripheral nervous system that controls the body's skeletal muscles

- Autonomic Nervous System
 - the part of the peripheral nervous system that controls the glands and the muscles of the internal organs (such as the heart)
- Sympathetic Nervous System
 - division of the autonomic nervous system that arouses the body, mobilizing its energy in stressful situations
- Parasympathetic Nervous System
 - division of the autonomic nervous system that calms the body, conserving its energy

CENTRAL NERVOUS SYSTEM Brain

PARASYMPATHETIC

Reflex

a simple, automatic, inborn response to a sensory

Brainstem

- the oldest part and central core of the brain, beginning where the spinal cord swells as it enters the skull
- responsible for automatic survival functions
- Medulla [muh-DUL-uh]
 - base of the brainstem
 - controls heartbeat and breathing

- Reticular Formation
 - a nerve network in the brainstem that plays an important role in controlling arousal
- Thalamus [THAL-uh-muss]
 - the brain's sensory switchboard, located on top of the brainstem
 - it directs messages to the sensory receiving areas in the cortex and transmits replies to the cerebellum and medulla

- Cerebellum [sehruh-BELL-um]
 - the "little brain" attached to the rear of the brainstem
 - it helps coordinate voluntary movement and balance

Lesion

- tissue destruction
- a brain lesion is a naturally or experimentally caused destruction of brain tissue

Electroencephalogram (EEG)

- an amplified recording of the waves of electrical activity that sweep across the brain's surface
- these waves are measured by electrodes placed on the scalp

- Computed Tomography (CT) Scan
 - a series of x-ray photographs taken from different angles and combined by computer into a composite representation of a slice through the body. Also called *CAT scan*
- Positron Emission Tomography (PET) Scan
 - a visual display of brain activity that detects where a radioactive form of glucose goes while the brain performs a given task
- Magnetic Resonance Imaging (MRI)
 - a technique that uses magnetic fields and radio waves to produce computer-generated images that distinguish among different types of soft tissue; allows us to see structures within the brain

PET Scan

MRI Scan

- Limbic System
 - a doughnut-shaped system of neural structures at the border of the brainstem and cerebral hemispheres
 - associated with emotions such as fear and aggression and drives such as those for food and sex
 - includes the hippocampus, amygdala, and hypothalamus.
- Amygdala [ah-MIG-dah-la]
 - two almond-shaped neural clusters that are components of the limbic system and are linked to emotion

- Hypothalamus
 - neural structure lying below (hypo) the thalamus; directs several maintenance activities
 - eating
 - drinking
 - body temperature
 - helps govern the endocrine system via the pituitary gland
 - is linked to emotion

The Limbic System

The Limbic System

 Electrode implanted in reward center

Cerebral Cortex

- the intricate fabric of interconnected neural cells that covers the cerebral hemispheres
- the body's ultimate control and information processing center

Glial Cells

 cells in the nervous system that support, nourish, and protect neurons

- Frontal Lobes
 - involved in speaking and muscle movements and in making plans and judgments
- Parietal Lobes
 - include the sensory cortex
- Occipital Lobes
 - include the visual areas, which receive visual information from the opposite visual field
- Temporal Lobes
 - include the auditory areas

- Motor Cortex
 - area at the rear of the frontal lobes that controls voluntary movements
- Sensory Cortex
 - area at the front of the parietal lobes that registers and processes body sensations

The Cerebral Cortex

The Cerebral Cortex

 Functional MRI scan shows the visual cortex activated as the subject looks at faces

Visual and Auditory Cortex

Association Areas

AB DT DH BAS decreopter

 More intelligent animals have increased "uncommitted" or association areas of the cortex

- Motor areas
- Sensory areas
- Association areas

The Cerebral Cortex

Aphasia

 impairment of language, usually caused by left hemisphere damage either to Broca's area (impairing speaking) or to Wernicke's area (impairing understanding)

Broca's Area

 an area of the left frontal lobe that directs the muscle movements involved in speech

Wernicke's Area

 an area of the left temporal lobe involved in language comprehension and expression

Specialization and Integration

Specialization and Integration

Brain activity when hearing, seeing, and speaking words

Brain Structures and their Functions

Corpus callosum: axon fibers connecting two cerebral hemispheres

Thalamus: relays messages between lower brain centers and cerebral cortex

Hypothalamus: controls maintenance functions such as eating; helps govern endocrine system; linked to emotion and reward

Pituitary: master endocrine gland

Reticular formation: helps control arousal

Medulla: controls heartbeat and breathing

Spinal cord: pathway for neural fibers traveling to and from brain; controls simple reflexes

Cerebellum: coordinates voluntary movement and balance Cerebral cortex: ultimate control and information-processing

center

Brain Reorganization

- Plasticity
 - the brain's capacity for modification, as evident in brain reorganization following damage (especially in children) and in experiments on the effects of experience on brain development

Our Divided Brain

CorpusCallosum

- large band of neural fibers
- connects the two brain hemispheres
- carriesmessagesbetween thehemispheres

Our Divided Brain

The information highway from the eye to the brain

Split Brain

a condition in which the two hemispheres of the brain are isolated by cutting the connecting fibers (mainly those of the corpus callosum) between them

Split Brain

"What word did you see?"

Two words separated by a dot are momentarily projected.

or

"Point with your left hand to the word you saw."

The Endocrine System

Endocrine System

- the body's "slow" chemical communication system
- a set of glands that secrete hormones into the bloodstream

Neural and Hormonal Systems

Hormones

- chemical messengers, mostly those manufactured by the endocrine glands, that are produced in one tissue and affect another
- Adrenal [ah-DREEN-el] Glands
 - a pair of endocrine glands just above the kidneys
 - secrete the hormones epinephrine (adrenaline) and norepinephrine (noradrenaline), which help to arouse the body in times of stress

Pituitary Gland

 under the influence of the hypothalamus, the pituitary regulates growth and controls other endocrine glands